001     201310
005     20240625095114.0
024 7 _ |2 doi
|a 10.1021/bi4001744
024 7 _ |2 ISSN
|a 0006-2960
024 7 _ |2 ISSN
|a 1520-4995
024 7 _ |2 WOS
|a WOS:000318333100010
037 _ _ |a FZJ-2015-03615
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Musiani, Francesco
|b 0
245 _ _ |a Conformational Fluctuations of UreG, an Intrinsically Disordered Enzyme
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433940074_12152
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a UreG proteins are small GTP binding (G) proteins that catalyze the hydrolysis of GTP necessary for the maturation of urease, a virulence factor in bacterial pathogenesis. UreG proteins are the first documented cases of intrinsically disordered enzymes. The comprehension of the dynamics of folding−unfolding events occurring in this protein could shed light on the enzymatic mechanism of UreG. Here, we used the recently developed replica exchange with solute tempering (REST2) computational methodology to explore the conformational space of UreG from Helicobacter pylori (HpUreG) and to identify its structural fluctuations. The same simulation and analysis protocol has been applied to HypB from Methanocaldococcus jannaschii (MjHypB), which is closely related to UreG in both sequence and function, even though it is not intrinsically disordered. A comparison of the two systems reveals that both HpUreG and MjHypB feature a substantial rigidity of the protein regions involved in catalysis, justifying its residual catalytic activity. On the other hand, HpUreG tends to unfold more than MjHypB in portions involved in protein−protein interactions with metallochaperones necessary for the formation of multiprotein complexes known to be involved in urease activation.
536 _ _ |0 G:(DE-HGF)POF2-899
|a 899 - ohne Topic (POF2-899)
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)146009
|a Ippoliti, Emiliano
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Micheletti, Cristian
|b 2
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 3
|e Corresponding Author
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Ciurli, Stefano
|b 4
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)1472258-6
|a 10.1021/bi4001744
|g Vol. 52, no. 17, p. 2949 - 2954
|n 17
|p 2949 - 2954
|t Biochemistry
|v 52
|x 1520-4995
|y 2013
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201310/files/bi4001744.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201310
|p VDB
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 0
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)146009
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-5-20120330


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21