000201313 001__ 201313
000201313 005__ 20240625095114.0
000201313 0247_ $$2doi$$a10.1039/C2CP42396K
000201313 0247_ $$2ISSN$$a1463-9076
000201313 0247_ $$2ISSN$$a1463-9084
000201313 0247_ $$2WOS$$aWOS:000313566300050
000201313 0247_ $$2altmetric$$aaltmetric:1619446
000201313 0247_ $$2pmid$$apmid:23247608
000201313 037__ $$aFZJ-2015-03618
000201313 041__ $$aEnglish
000201313 082__ $$a540
000201313 1001_ $$0P:(DE-HGF)0$$aGonçalves, Marcos Brown$$b0
000201313 245__ $$aStructural prediction of a rhodamine-based biosensor and comparison with biophysical data
000201313 260__ $$aCambridge$$bRSC Publ.$$c2013
000201313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435064408_32636
000201313 3367_ $$2DataCite$$aOutput Types/Journal article
000201313 3367_ $$00$$2EndNote$$aJournal Article
000201313 3367_ $$2BibTeX$$aARTICLE
000201313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201313 3367_ $$2DRIVER$$aarticle
000201313 520__ $$aThe predicted structure has been calculated for a protein-based biosensor for inorganic phosphate (Pi), previously developed by some of us (Okoh et al., Biochemistry, 2006, 45, 14764). This is the phosphate binding protein from Escherichia coli labelled with two rhodamine fluorophores. Classical molecular dynamics and hybrid Car–Parrinello/molecular mechanics simulations allow us to provide molecular models of the biosensor both in the presence and in the absence of Pi. In the latter case, the rhodamine fluorophores maintain a stacked conformation in a ‘face A to face B’ orientation, which is different from the ‘face A to face A’ stacked orientation of free fluorophores in aqueous solution (Ilich et al., Spectrochim. Acta, Part A, 1996, 52, 1323). A protein conformation change upon binding Pi prevents significant stacking of the two rhodamines. In both states, the rhodamine fluorophores form hydrophobic contact with LEU291, without establishing significant hydrogen bonds with the protein. The accuracy of the models is established by a comparison between calculated and experimentalabsorption and circular dichroism spectra.
000201313 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201313 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201313 7001_ $$0P:(DE-Juel1)146008$$aDreyer, Jens$$b1$$ufzj
000201313 7001_ $$0P:(DE-HGF)0$$aLupieri, Paola$$b2
000201313 7001_ $$0P:(DE-HGF)0$$aBarrera-Patiño, Claudia$$b3
000201313 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b4$$ufzj
000201313 7001_ $$0P:(DE-HGF)0$$aWebb, Martin R.$$b5
000201313 7001_ $$0P:(DE-HGF)0$$aCorrie, John E. T.$$b6
000201313 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b7$$eCorresponding Author$$ufzj
000201313 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C2CP42396K$$gVol. 15, no. 6, p. 2177 - 2183$$n6$$p2177 - 2183$$tPhysical chemistry, chemical physics$$v15$$x1463-9084$$y2013
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.pdf$$yRestricted
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.gif?subformat=icon$$xicon$$yRestricted
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201313 8564_ $$uhttps://juser.fz-juelich.de/record/201313/files/c2cp42396k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201313 909CO $$ooai:juser.fz-juelich.de:201313$$pVDB
000201313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201313 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201313 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201313 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201313 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201313 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201313 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146008$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201313 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b2$$kGRS
000201313 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b3$$kGRS
000201313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000201313 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201313 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201313 920__ $$lyes
000201313 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201313 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201313 980__ $$ajournal
000201313 980__ $$aVDB
000201313 980__ $$aI:(DE-Juel1)GRS-20100316
000201313 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201313 980__ $$aUNRESTRICTED
000201313 981__ $$aI:(DE-Juel1)INM-9-20140121
000201313 981__ $$aI:(DE-Juel1)IAS-5-20120330