001     201315
005     20240625095114.0
024 7 _ |a 10.1039/C4DT01339E
|2 doi
024 7 _ |a 0300-9246
|2 ISSN
024 7 _ |a 1364-5447
|2 ISSN
024 7 _ |a 1470-479X
|2 ISSN
024 7 _ |a 1472-7773
|2 ISSN
024 7 _ |a 1477-9226
|2 ISSN
024 7 _ |a 1477-9234
|2 ISSN
024 7 _ |a WOS:000339862400036
|2 WOS
024 7 _ |a altmetric:2448677
|2 altmetric
024 7 _ |a pmid:24983998
|2 pmid
037 _ _ |a FZJ-2015-03620
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)166168
|a Calandrini, Vania
|b 0
|u fzj
245 _ _ |a Platination of the copper transporter ATP7A involved in anticancer drug resistance
260 _ _ |a London
|b Soc.
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435064564_32631
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The clinical efficacy of the widely used anticancer drug cisplatin is severely limited by the emergence of resistance. This is related to the drug binding to proteins such as the copper influx transporter Ctr1, the copper chaperone Atox1, and the copper pumps ATP7A and ATP7B. While the binding modes of cisplatin to the first two proteins are known, the structural determinants of platinated ATP7A/ATP7B are lacking. Here we investigate the interaction of cisplatin with the first soluble domain of ATP7A. First, we establish by ESI-MS and 1H, 13C, and 15N NMR that, in solution, the adduct is a monomer in which the sulfur atoms of residues Cys19 and Cys22 are cis-coordinated to the [Pt(NH3)2]2+ moiety. Then, we carry out hybrid Car–Parrinello QM/MM simulations and computational spectroscopy calculations on a model adduct based on the NMR structure of the apo protein and featuring the experimentally determined binding mode of the metal ion. These calculations show quantitative agreement with CD spectra and 1H, 13C, and 15N NMR chemical shifts, thus providing a quantitative molecular view of the 3D binding mode of cisplatin to ATP7A. Importantly, the same comparison rules out a variety of alternative models with different coordination modes, that we explored to test the robustness of the computational approach. Using this combined in silico–in vitro approach we provide here for the first time a quantitative 3D atomic view of the platinum binding to the first soluble domain of ATP7A.
536 _ _ |0 G:(DE-HGF)POF2-899
|a 899 - ohne Topic (POF2-899)
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Arnesano, Fabio
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Galliani, Angela
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nguyen, Trung Hai
|b 3
700 1 _ |0 P:(DE-Juel1)146009
|a Ippoliti, Emiliano
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 5
|e Corresponding Author
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Natile, Giovanni
|b 6
773 _ _ |0 PERI:(DE-600)1472887-4
|a 10.1039/C4DT01339E
|g Vol. 43, no. 31, p. 12085 -
|n 31
|p 12085 -
|t Dalton transactions
|v 43
|x 1477-9234
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201315/files/c4dt01339e.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201315
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166168
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 3
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)146009
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
913 1 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)GRS-20100316


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21