000201316 001__ 201316
000201316 005__ 20240625085658.0
000201316 0247_ $$2doi$$a10.1002/qua.24610
000201316 0247_ $$2ISSN$$a0020-7608
000201316 0247_ $$2ISSN$$a1097-461X
000201316 0247_ $$2WOS$$aWOS:000333001100002
000201316 0247_ $$2altmetric$$aaltmetric:2075865
000201316 037__ $$aFZJ-2015-03621
000201316 082__ $$a540
000201316 1001_ $$0P:(DE-HGF)0$$aPapamokos, George$$b0
000201316 245__ $$aTrapping acrylamide by a Michael addition: A computational study of the reaction between acrylamide and niacin
000201316 260__ $$aNew York, NY$$bWiley$$c2014
000201316 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435065099_32636
000201316 3367_ $$2DataCite$$aOutput Types/Journal article
000201316 3367_ $$00$$2EndNote$$aJournal Article
000201316 3367_ $$2BibTeX$$aARTICLE
000201316 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201316 3367_ $$2DRIVER$$aarticle
000201316 520__ $$aNeurotoxic and carcinogenic acrylamide (ACR) is present in many food products. This finding spurred numerous studies for ACR scavengers. Niacin is putatively one of them because it reacts via Michael addition with ACR to form 1-propanamide-3-carboxy pyridinium. Here, we study the mechanism and energetics of this reaction in aqueous solution by density functional theory. The CAM-B3LYP and M06-2X functionals with the 6-31+G(d,p) basis set and implicit solvent were used. Single point calculations at the MP2 level with the same basis set were performed on optimized structures obtained at the M06-2X level. Solvent effects comprehended both polarizable continuum model and solvation model density solvation models. The calculated NMR chemical shifts of 1-propanamide-3-carboxy pyridinium are in agreement with experimental results. The theoretical study favors thermodynamically the formation of the adduct while the calculated activation energies turn out not to be too dissimilar from the ones measured for the alkylation reaction between ACR and 4(p-nitrobenzyl)pyridine
000201316 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000201316 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201316 7001_ $$0P:(DE-Juel1)146008$$aDreyer, Jens$$b1$$eCorresponding Author$$ufzj
000201316 7001_ $$0P:(DE-HGF)0$$aNavarini, Luciano$$b2
000201316 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$ufzj
000201316 773__ $$0PERI:(DE-600)1475014-4$$a10.1002/qua.24610$$gVol. 114, no. 9, p. 553 - 559$$n9$$p553 - 559$$tInternational journal of quantum chemistry$$v114$$x0020-7608$$y2014
000201316 909CO $$ooai:juser.fz-juelich.de:201316$$pVDB
000201316 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201316 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201316 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201316 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201316 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201316 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201316 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201316 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201316 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201316 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201316 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS
000201316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146008$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201316 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201316 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201316 9141_ $$y2015
000201316 920__ $$lyes
000201316 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000201316 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201316 980__ $$ajournal
000201316 980__ $$aVDB
000201316 980__ $$aI:(DE-Juel1)GRS-20100316
000201316 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201316 980__ $$aUNRESTRICTED
000201316 981__ $$aI:(DE-Juel1)INM-9-20140121
000201316 981__ $$aI:(DE-Juel1)IAS-5-20120330