001     201329
005     20240625095115.0
024 7 _ |a 10.1016/j.abb.2015.03.011
|2 doi
024 7 _ |a 0003-9861
|2 ISSN
024 7 _ |a 1096-0384
|2 ISSN
024 7 _ |a WOS:000360781200010
|2 WOS
024 7 _ |a altmetric:3826272
|2 altmetric
024 7 _ |a pmid:25797436
|2 pmid
037 _ _ |a FZJ-2015-03626
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)145921
|a Rossetti, Giulia
|b 0
|u fzj
245 _ _ |a Structural predictions of neurobiologically relevant G-protein coupled receptors and intrinsically disordered proteins
260 _ _ |a San Diego, Calif.
|b Elsevier
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442845492_28362
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |a .
520 _ _ |a G protein coupled receptors (GPCRs) and intrinsic disordered proteins (IDPs) are key players for neuronal function and dysfunction. Unfortunately, their structural characterization is lacking in most cases. From one hand, no experimental structure has been determined for the two largest GPCRs subfamilies, both key proteins in neuronal pathways. These are the odorant (450 members out of 900 human GPCRs) and the bitter taste receptors (25 members) subfamilies. On the other hand, also IDPs structural characterization is highly non-trivial. They exist as dynamic, highly flexible structural ensembles that undergo conformational conversions on a wide range of timescales, spanning from picoseconds to milliseconds. Computational methods may be of great help to characterize these neuronal proteins. Here we review recent progress from our lab and other groups to develop and apply in silico methods for structural predictions of these highly relevant, fascinating and challenging systems.
536 _ _ |0 G:(DE-HGF)POF3-574
|a 574 - Theory, modelling and simulation (POF3-574)
|c POF3-574
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Dibenedetto, Domenica
|b 1
700 1 _ |0 P:(DE-Juel1)166168
|a Calandrini, Vania
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Giorgetti, Alejandro
|b 3
|e Corresponding Author
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)1461378-5
|a 10.1016/j.abb.2015.03.011
|g p. S0003986115001393
|p 91–100
|t Archives of biochemistry and biophysics
|v 582
|x 0003-9861
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201329/files/1-s2.0-S0003986115001393-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201329
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145921
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 1
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166168
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 3
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ARCH BIOCHEM BIOPHYS : 2013
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS
|l GRS
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)GRS-20100316
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21