000201330 001__ 201330
000201330 005__ 20240625095115.0
000201330 0247_ $$2doi$$a10.1007/s13361-014-1048-z
000201330 0247_ $$2ISSN$$a1044-0305
000201330 0247_ $$2ISSN$$a1879-1123
000201330 0247_ $$2WOS$$aWOS:000350106100011
000201330 0247_ $$2altmetric$$aaltmetric:5512572
000201330 0247_ $$2pmid$$apmid:25510932
000201330 037__ $$aFZJ-2015-03627
000201330 041__ $$aEnglish
000201330 082__ $$a530
000201330 1001_ $$0P:(DE-HGF)0$$aD’Urzo, Annalisa$$b0
000201330 245__ $$aMolecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound to a Partner by Combined ESI-IM-MS and Modeling
000201330 260__ $$aNew York [u.a.]$$bSpringer$$c2015
000201330 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438324950_2086
000201330 3367_ $$2DataCite$$aOutput Types/Journal article
000201330 3367_ $$00$$2EndNote$$aJournal Article
000201330 3367_ $$2BibTeX$$aARTICLE
000201330 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201330 3367_ $$2DRIVER$$aarticle
000201330 520__ $$aIntrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered NTAIL domain and the phosphoprotein X domain (PXD) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire NTAIL domain bound to PXD at atomic resolution.
000201330 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000201330 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000201330 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201330 7001_ $$0P:(DE-HGF)0$$aKonijnenberg, Albert$$b1
000201330 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b2$$ufzj
000201330 7001_ $$0P:(DE-HGF)0$$aHabchi, Johnny$$b3
000201330 7001_ $$0P:(DE-Juel1)166112$$aLi, Jinyu$$b4$$ufzj
000201330 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$ufzj
000201330 7001_ $$0P:(DE-HGF)0$$aSobott, Frank$$b6
000201330 7001_ $$0P:(DE-HGF)0$$aLonghi, Sonia$$b7$$eCorresponding Author
000201330 7001_ $$0P:(DE-HGF)0$$aGrandori, Rita$$b8$$eCorresponding Author
000201330 773__ $$0PERI:(DE-600)2019911-9$$a10.1007/s13361-014-1048-z$$gVol. 26, no. 3, p. 472 - 481$$n3$$p472 - 481$$tJournal of the American Society for Mass Spectrometry$$v26$$x1879-1123$$y2015
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.pdf$$yRestricted
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.gif?subformat=icon$$xicon$$yRestricted
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201330 8564_ $$uhttps://juser.fz-juelich.de/record/201330/files/art_10.1007_s13361-014-1048-z.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201330 909CO $$ooai:juser.fz-juelich.de:201330$$pVDB
000201330 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201330 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201330 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201330 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201330 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201330 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201330 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201330 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201330 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201330 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201330 9141_ $$y2015
000201330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166112$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201330 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000201330 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000201330 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000201330 920__ $$lyes
000201330 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
000201330 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000201330 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x2
000201330 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
000201330 980__ $$ajournal
000201330 980__ $$aVDB
000201330 980__ $$aI:(DE-Juel1)INM-9-20140121
000201330 980__ $$aI:(DE-Juel1)IAS-5-20120330
000201330 980__ $$aI:(DE-Juel1)GRS-20100316
000201330 980__ $$aI:(DE-Juel1)JSC-20090406
000201330 980__ $$aUNRESTRICTED
000201330 981__ $$aI:(DE-Juel1)IAS-5-20120330
000201330 981__ $$aI:(DE-Juel1)GRS-20100316
000201330 981__ $$aI:(DE-Juel1)JSC-20090406