000201355 001__ 201355
000201355 005__ 20250129094313.0
000201355 0247_ $$2Handle$$a2128/9538
000201355 0247_ $$2ISSN$$a1866-1807
000201355 020__ $$a978-3-95806-087-6
000201355 037__ $$aFZJ-2015-03652
000201355 041__ $$aEnglish
000201355 1001_ $$0P:(DE-Juel1)130742$$aJosten, Elisabeth$$eCorresponding author$$gfemale$$ufzj
000201355 245__ $$aLong range order in 3D nanoparticle assemblies$$f2014-01-31
000201355 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000201355 300__ $$a238 S.
000201355 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1449657656_32509
000201355 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000201355 3367_ $$02$$2EndNote$$aThesis
000201355 3367_ $$2DRIVER$$adoctoralThesis
000201355 3367_ $$2BibTeX$$aPHDTHESIS
000201355 3367_ $$2DataCite$$aOutput Types/Dissertation
000201355 3367_ $$2ORCID$$aDISSERTATION
000201355 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v111
000201355 502__ $$aRWTH Aachen, Diss., 2014$$bDr.$$cRWTH Aachen$$d2014
000201355 520__ $$aMagnetic nanoparticles and their assembly in highly correlated structures are of great interest for future applications as e.g. spin-based data storage. These systems are not only distinguished by the obvious miniaturization but by the novel physical properties emerging due to their limited size and ordered arrangement, as well. The superstructures are formed from nanometer sized building blocks, ordered like atoms in a crystal, which renders them a newclass of materials. To gain a profound understanding of these systems it is necessary to perform experiments on all length scales. The present work supplies an extensive and novel contribution to the investigation of the structural properties and the self-assembly of iron oxide nanoparticle superstructures. The unique combination of microscopy and scattering techniques allows a new understanding of the structural features of three dimensional structures that develop from the self-organization of these particles. In this thesis, magnetic nanoparticles have been deposited for this purpose using a self organization method to form long range ordered structures, so called mesocrystals. The processof self-assembling has been investigated for the influence of different deposition parameters and these parameters have been optimized. An in-situ study using grazing incidence x-ray scattering during the growth of the mesocrystals allowed the identification of different stages of the mesocrystal growth and its spatial position. From the combination of these different experiments it was possible to establish a model for the growth process governed by a shape and size selective arrangement of the particles. Another highlight of this work is the measurement on a single mesocrystal, which had only a volume of 2.5 $\mu$m$^{3}$, leading to a challenging diffraction experiment. It was possible to extract structural quality parameters from this investigation, as e.g. the mosaicity, which would normally be masked by the distribution of the orientation and lattice parameters generally present in the normal samples that contain a large number of mesocrystals. A detailed analysis of the scattering patterns of different samples with mesocrystal ensembles yielded a refined structure model, which allowed the quantitative analysis of the data collected as well for in-situ created as for already deposited samples. In addition, a new rounded cubes form factor was developed for the modeling of small angle x-ray scattering and the single mesocrystal diffraction data. In conclusion, this work shows the large correlation in these nanoparticle superstructures, the distribution of different structural parameters that can be present in the samples and how much information can be extracted from the scattering patterns.
000201355 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000201355 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000201355 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x2
000201355 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000201355 650_7 $$xDiss.
000201355 773__ $$y2014
000201355 8564_ $$uhttps://juser.fz-juelich.de/record/201355/files/Schluesseltech_111.pdf$$yOpenAccess
000201355 8564_ $$uhttps://juser.fz-juelich.de/record/201355/files/Schluesseltech_111.gif?subformat=icon$$xicon$$yOpenAccess
000201355 8564_ $$uhttps://juser.fz-juelich.de/record/201355/files/Schluesseltech_111.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201355 8564_ $$uhttps://juser.fz-juelich.de/record/201355/files/Schluesseltech_111.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201355 8564_ $$uhttps://juser.fz-juelich.de/record/201355/files/Schluesseltech_111.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201355 909CO $$ooai:juser.fz-juelich.de:201355$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201355 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201355 9141_ $$y2015
000201355 9141_ $$y2015
000201355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130742$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201355 9130_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSpin-based and quantum information$$x0
000201355 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x1
000201355 9130_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vNeutrons$$x2
000201355 9130_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vIn-house Research with PNI$$x3
000201355 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x4
000201355 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201355 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000201355 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000201355 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000201355 920__ $$lyes
000201355 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000201355 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000201355 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000201355 9801_ $$aUNRESTRICTED
000201355 9801_ $$aFullTexts
000201355 980__ $$aphd
000201355 980__ $$aVDB
000201355 980__ $$aUNRESTRICTED
000201355 980__ $$abook
000201355 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000201355 980__ $$aI:(DE-Juel1)PGI-4-20110106
000201355 980__ $$aI:(DE-82)080009_20140620
000201355 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000201355 981__ $$aI:(DE-Juel1)PGI-4-20110106