001     201368
005     20240610120402.0
024 7 _ |a 10.1007/s10853-014-8471-1
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a WOS:000340679000002
|2 WOS
037 _ _ |a FZJ-2015-03665
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Appel, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Orienting MoS$_{2}$ flakes into ordered films
260 _ _ |a Dordrecht [u.a.]
|c 2014
|b Springer Science + Business Media B.V
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435122567_21682
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Layered transition metal di-chalcogenide (TMD) materials exhibit a unique combination of structural anisotropy combined with rich chemistry that confers controllability over physical properties such as bandgap and magnetism. Most research in this area is focused on single layers that are technologically challenging to produce, especially when trying to dope and alloy the host lattice. In this work, we use MoS2 flakes as a model system for the production of deliberately oriented films for practical applications in which anisotropic materials are required. The proposed production method combines ball milling with exfoliation in solution of MoS2 flakes, followed by their arrangement on a large centimeter-scale substrate by a simple and non-expensive procedure. The results show that the level of orientation achieved using the proposed system is as good as that of materials that were pressed and subjected to thermal treatment. The ball milling and exfoliation processes maintain the original crystalline structure of the MoS2 flakes, and the XRD results show that additional crystallographic phases were not produced. Lattice parameters are preserved, which verifies that other species such as water molecules did not intercalate into the MoS2 molecules. The proposed method of producing oriented films is universal, and as such, it is useful both for pure materials and for mixtures of compounds, the latter of which can be used to produce films with specifically tailored physical properties.
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Volman, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Houben, L.
|0 P:(DE-Juel1)130723
|b 2
|e Corresponding Author
|u fzj
700 1 _ |a Gelbstein, Y.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bar Sadan, M.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1007/s10853-014-8471-1
|g Vol. 49, no. 21, p. 7353 - 7359
|0 PERI:(DE-600)2015305-3
|n 21
|p 7353 - 7359
|t Journal of materials science
|v 49
|y 2014
|x 1573-4803
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201368/files/art_10.1007_s10853-014-8471-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201368
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130723
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21