000201385 001__ 201385
000201385 005__ 20240610121235.0
000201385 0247_ $$2doi$$a10.1109/TASC.2014.2318314
000201385 0247_ $$2ISSN$$a1051-8223
000201385 0247_ $$2ISSN$$a1558-2515
000201385 0247_ $$2WOS$$aWOS:000340089200007
000201385 037__ $$aFZJ-2015-03680
000201385 041__ $$aEnglish
000201385 082__ $$a530
000201385 1001_ $$0P:(DE-Juel1)130621$$aDivin, Yuri$$b0$$ufzj
000201385 245__ $$aTerahertz Applications of Hilbert-Transform Spectral Analysis
000201385 260__ $$aNew York, NY$$bIEEE$$c2014
000201385 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435123518_21684
000201385 3367_ $$2DataCite$$aOutput Types/Journal article
000201385 3367_ $$00$$2EndNote$$aJournal Article
000201385 3367_ $$2BibTeX$$aARTICLE
000201385 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201385 3367_ $$2DRIVER$$aarticle
000201385 520__ $$aBridging of the terahertz gap in the electromagnetic spectrum between the microwave and infrared ranges requires a variety of new technological developments from basic elements, such as emitters and detectors, to complete systems, such as spectrum analyzers and imagers. As an example of these developments, Hilbert-transform spectral analysis of terahertz radiation sources has been demonstrated. A spectrum analyzer based on a high- Tc square-law Josephson detector has been developed and characterized in the frequency range from 50 to 1800 GHz. Spectra of output terahertz radiation from optically-pumped lasers and frequency multipliers have been studied, and their regimes were optimized for a single-frequency operation. Starting from the optimized multipliers, a polychromatic source has been synthesized and characterized with Hilbert-transform spectrum analyzer
000201385 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000201385 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201385 7001_ $$0P:(DE-Juel1)136672$$aSnezhko, Alexander$$b1
000201385 7001_ $$0P:(DE-Juel1)130812$$aLyatti, Matvey$$b2$$ufzj
000201385 7001_ $$0P:(DE-Juel1)130898$$aPoppe, U.$$b3$$ufzj
000201385 7001_ $$0P:(DE-HGF)0$$aPavlovskiy, Valery$$b4
000201385 773__ $$0PERI:(DE-600)2025387-4$$a10.1109/TASC.2014.2318314$$gVol. 24, no. 4, p. 1 - 7$$n4$$p1 - 7$$tIEEE transactions on applied superconductivity$$v24$$x1558-2515$$y2014
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.pdf$$yRestricted
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.gif?subformat=icon$$xicon$$yRestricted
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201385 8564_ $$uhttps://juser.fz-juelich.de/record/201385/files/06803875.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201385 909CO $$ooai:juser.fz-juelich.de:201385$$pVDB
000201385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136672$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130812$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130898$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201385 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201385 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000201385 9141_ $$y2015
000201385 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201385 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201385 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201385 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201385 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201385 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201385 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201385 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201385 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201385 920__ $$lyes
000201385 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201385 980__ $$ajournal
000201385 980__ $$aVDB
000201385 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201385 980__ $$aUNRESTRICTED
000201385 981__ $$aI:(DE-Juel1)ER-C-1-20170209