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Conventional and spin-related thermoelectric effects in transport through a magnetic tunnel junction with a

large-spin impurity, such as a magnetic molecule or atom, embedded into the corresponding barrier are studied

theoretically in the linear-response regime. The impurity is described by the giant spin Hamiltonian, with

both uniaxial and transverse magnetic anisotropy taken into account. Owing to the presence of the transverse

component of magnetic anisotropy, the spin of a tunneling electron can be reversed during scattering on the

impurity, even in the low-temperature regime. This reversal appears due to the exchange interaction of tunneling

electrons with the magnetic impurity. We calculate Seebeck and spin Seebeck coefficients, and analyze their

dependence on various parameters of the spin impurity and tunnel junction. In addition, conventional and spin

figures of merit as well as the electronic contribution to heat conductance are considered. We also show that pure

spin current can be driven by a spin bias applied to the junction with spin impurity, even if no electron transfer

between the electrodes can take place. The underlying mechanism employs single-electrode tunneling processes

(electrode-spin exchange interaction) and the impurity as an intermediate reservoir of angular momentum.
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I. INTRODUCTION

The potential success of novel spintronic nanoscopic

devices relies on a complete understanding of fundamental

mechanisms governing the transport of charge, spin, and

energy. In fact, the thermoelectric and thermomagnetic effects

have been the subject of research in condensed-matter physics

for nearly two centuries [1]. However, recently one observes

a renaissance of interest in the phenomena based on the

interplay of transport of charge, spin, and energy, especially in

nanoscopic systems [2–7].

In general, the thermoelectric phenomena in metals, such

as the Seebeck or Peltier effects (see Sec. II), stem from

the electron-hole asymmetry [1,6]. Whereas the consequences

of this fact were well understood for bulk and continuous

systems, the experiment of Smith et al. [8] demonstrating

the thermoelectric effect in a tunnel junction (formed by

two metallic electrodes separated by an oxide barrier) proved

that this is valid in principle also for mesoscopic systems

consisting of discrete subsystems—each of them being in

local equilibrium, but not necessarily in equilibrium with other

subsystems. The idea was further developed by Johnson and

Silsbee [9], who suggested that if at least one of the electrodes

is ferromagnetic and the junction is out of thermodynamic

equilibrium, not only do thermally stimulated voltages and

heat transport arise, but also electrically and thermally induced

magnetization currents can appear. Furthermore, they also

predicted the reciprocal effects, i.e., “magnetically” stimulated

electrical and thermal currents. Independently, a theory of

linear electrical and thermal transport between two metallic

reservoirs interconnected via ideal leads to an arbitrary

disordered system was developed by Sivan and Imry [10].

*misiorny@amu.edu.pl

The interest in thermoelectric properties of nanoscopic

systems, however, has been only awakened by first experiments

involving quantum dots [11–15], which have been followed by

numerous theoretical works covering the limits of both weak

[16–25] and strong [26–33] tunnel coupling between the dot

and electrodes. An important practical aspect accompanying

research on thermoelectric effects is their potential significance

for harnessing power dissipated as heat, and thus reducing the

loss of energy [34]. In this respect, a prospective candidate

as heat-voltage converters seem to be single molecules.

Experiments on molecular junctions employing a scanning

tunneling microscope (STM) setup and comprising up to a

few molecules [35–42] have shown that such systems remain

thermoelectrically responsive at temperatures as high as room

temperature, and their specific thermoelectric properties can

be to some extent tailored by chemical engineering. This, in

turn, has also triggered a significant interest in theoretical

description of thermoelectric transport through molecular

junctions [43–47]. It has been suggested that the efficiency

of such devices can be improved due to a violation of

the Wiedemann-Franz law occurring as a consequence of

the system’s energy quantization and Coulomb interactions

[26,29,48–51].

Since electrons—apart from charge—possess also a spin

degree of freedom, one should thus expect the interplay

between spin and heat currents leading to some interesting

thermoelectric phenomena [5]. In general, these can be

further distinguished into independent electron and collective

effects [6]. The former group comprises effects which can be

explained by a model of two independent spin channels, and

thus it is limited to systems where the spin-flip diffusion length

of conduction electrons is sufficiently long with respect to the

system’s length scale. On the other hand, in the case of the

effects belonging to the second group, the spin currents are

not simply only due to a particle current but they are also
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carried by magnon excitations [52–54]. Consequently, unlike

the independent electron effects which are limited to metallic

systems, the collective thermoelectric effects can arise not only

in metallic ferromagnets [55–57], but also in semiconducting

ferromagnets [58] or even in insulating magnets [59,60].

The spin-dependent thermoelectric effects, which are the

subject of the present paper, have been experimentally studied

in a variety of nanoscopic systems, such as magnetic tunnel

junctions [6,61–63], nanopillars [64–66], nonlocal spin-valve

devices [67,68], as well as multilayered [69,70] and gran-

ular [71] systems. Moreover, such effects have also been

extensively studied theoretically in magnetic tunnel junctions

[72–75], local [76] and nonlocal [77] spin valves, quantum dots

[78,79], wires [80], wells [81], or even in single-molecule-

magnet junctions [82,83]. Interestingly enough, it has been

predicted, for example, that spin-polarized thermoelectric

heat currents can reverse the magnetization direction of a

ferromagnet [84], which appears due to the spin-transfer torque

associated with purely thermal currents. This effect has been

later confirmed by experiment [85]. Recently, a thermoelectric

equivalent of spin accumulation, i.e., spin heat accumulation,

manifested as different effective temperatures for the spin-up

and spin-down electrons, has been observed in a nanopillar

spin valve [86,87].

In the present paper we focus on spin-dependent

thermoelectric effects that can arise in linear-response

transport through a nanoscopic junction in which an impurity

of spin S > 1/2 is embedded into a barrier. Unlike in the case

considered by Johnson and Silsbee, [9] spins of conduction

electrons tunneling through the junction can be reversed

owing to scattering on the impurity. Such spin-flip scattering

processes lead to exchange of angular momentum between the

conduction electrons and the impurity, which in turn allows for

the control of spatial orientation of the impurity’s spin [88–90].

In the linear-response regime and when no excitations are

permitted, the spin exchange processes can result in transitions

of the impurity only between degenerate spin states whose an-

gular momentum differs by the quantum of angular momentum

�. For a spin-isotropic impurity, where all 2S + 1 spin states

are degenerate, this means that all these states can in principle

contribute to transport. However, usually a spatial symmetry of

a high-spin system is broken by the presence of environment,

e.g., as for a magnetic atom placed on a surface [91], which

renders the system spin anisotropic. If only the uniaxial

anisotropy exists, the two ground spin states are separated by

an energy barrier. At sufficiently low temperatures, i.e., lower

than the zero-field splitting energy between the ground and

first excited doublets—being also the largest excitation energy

between two consecutive states, the impurity occupies then

only the ground-state spin doublet, and no direct transitions are

allowed between the doublet ground states. In consequence,

in the linear-response regime only spin-conserving transport

processes are possible. The situation changes when the

transverse magnetic anisotropy is present in the system, as

it allows for mixing of states with different Sz numbers. In

particular, for a half-integer spin one obtains a ground-state

Kramers’ doublet, as follows from time-inversion symmetry.

In this paper we consider the situation when no energy

excitations of the impurity are admitted. Thus, when the

impurity is anisotropic, the temperature is limited to the

thermal energies smaller than the impurity excitation energy,

and in particular the zero-field splitting energy. Accordingly,

only ground-state doublet is involved in the linear-response

regime. On the other hand, when the impurity is isotropic,

then all impurity states are degenerate and all are involved

in transport in the linear-response regime. Thus, the above

temperature restriction becomes irrelevant, similarly as in the

case of a junction with no impurity. In Sec. II we provide

some background on thermoelectric phenomena. Description

of thermoelectricity in transport through a junction with spin

impurity in the barrier is presented in Sec. III. Numerical

results and their discussion are given in Sec. IV, which

is followed by the section comprising final conclusions

(Sec. V).

II. BACKGROUND ON THERMOELECTRIC PHENOMENA

Before introducing the model system to be considered in

this paper and calculating the thermoelectric parameters of

interest, we find it instructive to present some fundamental

concepts regarding the conventional thermoelectricity (for a

more detailed discussion see, e.g., Refs. [1,4,92–95]), and then

their generalization to the corresponding spin thermoelectric

phenomena. For this purpose, let us consider a tunnel junction

in which two metallic electrodes (reservoirs of electrons)

are separated by a tunnel barrier. First, we consider the

case when spin voltage is irrelevant (conventional thermo-

electricity), and then we also include the spin voltage (spin

thermoelectricity).

A. Conventional thermoelectricity

When a constant voltage δV and thermal δT bias is

maintained across the junction, it results in a stationary

net flow of charge and heat [2,8,9,96]. Moreover, since

charge and energy are in fact both carried by electrons

(we do not consider here energy carried by phonons),

the corresponding charge IC and heat IQ currents are re-

lated, leading to a variety of thermoelectric effects and

relations.

In order to reveal relation between charge and heat

transport, let us first focus on the transport of electrons under

isothermal conditions, δT = 0. In such a case, the charge

current IC is driven exclusively by a voltage bias δV , and

the relevant transport coefficient is the well-known electrical

conductance G,

G =
(

IC

δV

)

δT =0

. (1)

However, even though δT = 0, there is a heat current as-

sociated with the electrical current, and this phenomenon is

referred to as the Peltier effect. The relevant relation between

heat IQ and charge IC currents is then described by the Peltier

coefficient �,

� =
(

IQ

IC

)

δT =0

. (2)

Another limiting situation appears when the heat transfer

through the system occurs due to thermal bias in the absence

of a charge current, IC = 0. The latter condition can be easily
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achieved when the system is in an electrically open circuit.

The electronic contribution to the thermal conductance κ is

then defined as

κ =
(

IQ

δT

)

IC=0

. (3)

Although the resultant flow of electrons is now equal to zero,

a voltage difference between the two reservoirs appears as

a result of thermal gradient. This phenomenon is known as

the Seebeck effect and is characterized by the thermopower

(Seebeck coefficient) S,

S = −
(

δV

δT

)

IC=0

. (4)

Note that in order to achieve the condition IC = 0 in an

electrically closed system, one needs to apply an external volt-

age compensating the charge current due to the temperature

gradient.

Finally, the overall thermoelectric efficiency of a system is

described by the so-called figure of merit ZT,

ZT =
S2GT

κ
, (5)

which is a dimensionless quantity expressed in terms of the

experimentally measurable coefficients G, κ , and S. Note that

κ in Eq. (5) generally includes also the thermal conductance

due to phonons, which is not considered here.

B. Spin thermoelectricity

The concepts briefly described above can be further

generalized to the transport model based on two nonequivalent

spin channels [6]. Let us note first that charge transport in

ferromagnetic conductors is generally associated with a spin

current. Second, the electrochemical potentials for spin-up and

spin-down electrons can be different in the vicinity of an

interface between ferromagnetic and nonmagnetic materials

(i.e., up to distances of the order of the spin-flip diffusion

length) when the rate of electron scattering without spin flip

is significantly larger than the spin-flip rate. This appears

as spin accumulation at the interface [97,98]. The spin

accumulation (spin-dependent electrochemical potentials), in

turn, led to the concept of the so-called spin bias δVS.

Accordingly, the difference in electrochemical potentials of

the two electrodes in the spin-σ channel, δVσ , can be written

as δVσ = δV + ησ δVS, with η↑(↓) = ±1. Thus, with the use of

electrical and spin bias one can independently control electric

and spin currents. Moreover, in certain situations one can drive

pure spin current, i.e., spin current which is not associated with

any charge current. The occurrence of spin currents IS initiated

the concept of spin counterparts of the thermoelectric effects

discussed above.

Under isothermal conditions both charge IC and spin IS

currents can be controlled independently by voltage δV and

spin bias δVS. Hence, one can define a generalized conductance

matrix G as [78]

G ≡

(
G Gm

Gm
S GS

)

=




(
IC

δV

)

δT =0

δVS=0

(
IC

δVS

)

δT =0

δV =0(
IS

δV

)

δT =0

δVS=0

(
IS

δVS

)

δT =0

δV =0


. (6)

Furthermore, in addition to the conventional Peltier coefficient

�, one can introduce a spin Peltier coefficient �S,

� =
(

IQ

IC

)

δT =0

δVS=0

and �S =
(

IQ

IS

)

δT =0

δV =0

. (7)

The former coefficient describes a heat flow associated with

an electrical current in the absence of spin voltage, whereas

the latter one represents the heat current associated with a

spin current for a zero voltage bias. Note that the definition of

the Peltier coefficient � is equivalent to that given by Eq. (2)

providing spin accumulation is disregarded and there is no spin

voltage.

The definition of thermal conductivity in Eq. (3) holds also

in the present situation, when the additional constraint δVS = 0

is imposed,

κ =
(

IQ

δT

)

IC=0

δVS=0

. (8)

Interestingly, if spin accumulation can arise in the system,

thermal bias can induce not only an electrical voltage δV , but

also a spin voltage δVS . The latter effect is referred to as the

spin Seebeck effect. Consequently, along with the conventional

thermopowerS, one can formally define the spin thermopower

SS [19],

S = −
(

δV

δT

)

IC=0

δVS=0

and SS = −
(

δVS

δT

)

IC=0

δV =0

. (9)

To complete the discussion of spin-dependent effects, we note

that a spin analog of the figure of merit ZTS, see Eq. (5), can

be used to characterize the spin thermoelectric efficiency of a

system,

ZTS =
2e

�

S2
S |GS|T

κ
, (10)

with GS defined in Eq. (6) and the thermal conductivity κ

given by Eq. (8).

When a system is in an open circuit and there are no spin-

relaxation processes, then neither charge nor spin current can

flow through the system. Thus, one may alternatively define

the thermoelectric coefficients for IC = 0 and IS = 0 [78], i.e.,

S = −
(

δV

δT

)

IC=0

IS=0

and SS = −
(

δVS

δT

)

IC=0

IS=0

(11)

for the charge and spin thermopowers, and also

κ =
(

IQ

δT

)

IC=0

IS=0

. (12)
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for the heat conductance. Since to have zero spin current one

needs to apply a spin voltage, the charge thermopower may be

different from that determined from the conventional formula.

Note that this difference appears only when spin relaxation is

slow. In the following we will use the definitions (9).

III. THERMOELECTRICITY IN A MAGNETIC JUNCTION

WITH SPIN IMPURITY

A. Theoretical model

The system to be considered in the following consists of

two metallic—generally ferromagnetic—electrodes separated

by an insulating barrier. Tunneling of electrons between

the electrodes can appear either due to applied voltage

(electric or spin one) or due to a thermal bias; see Fig. 1(a).

Experimentally, the system can be either a simple planar

magnetic tunnel junction or a setup involving an STM tip as

one of the electrodes. Additionally, we assume that a magnetic

impurity is embedded in the barrier between the electrodes

[99–105], which scatters electrons traversing the barrier. The

total Hamiltonian of the system H thus consists of three terms,

H = Himp + Hel + HT, representing the impurity, electrodes,

and electron tunneling processes, respectively.

Here, we focus mainly on magnetic impurities character-

ized by a large spin number S, S > 1/2, whose behavior is

dominated by the presence of magnetic anisotropy. In general,

basic features of a large-spin magnetic impurity, represented by

a spin operator S = (Sx,Sy,Sz), are captured by the giant-spin

Hamiltonian [106],

Himp = −DS2
z +

E

2
(S2

+ + S2
−), (13)

where the first and second terms denote the uniaxial and

transverse magnetic anisotropy, respectively, with D and E

standing for the corresponding anisotropy constants and S± =
Sx ± iSy . Since we are interested here in magnetic impurities

capable of information storage, we assume an energy barrier

for spin reversal, i.e., D > 0. In addition, also the transverse

anisotropy constant can be assumed to be positive, E > 0, and

the two magnetic anisotropy constants satisfy the condition

[106] 0 ≤ E/D ≤ 1/3. Next, we assume a half-integer spin

S. Due to the presence of transverse magnetic anisotropy, each

of the 2S + 1 eigenstates |χm〉 of the impurity Hamiltonian

(13), Himp|χm〉 = Eχm
|χm〉, is then a linear combination of the

eigenstates |m〉 of the spin operator Sz. Note the notation we

use for the eigenstates |χm〉, with the subscript m correspond-

ing to the Sz component of highest weight in the state |χm〉,
i.e., limE→0 |χm〉 = |m〉. Moreover, the eigenstates |χm〉 are

twofold degenerate (Kramers’ doublets) and form two uncou-

pled sets [107,108] {|χ±S∓2k〉}k=0,1,...,S−1/2. Thus, any eigen-

state |χm〉, for m = −S, . . . ,S, can generally be written as

|χm〉 =
∑

k∈Z, |m+2k|≤S

〈m + 2k|χm〉|m + 2k〉, (14)

where 〈m + 2k|χm〉 represents the overlap of the state

|m + 2k〉 with the eigenstate |χm〉. In particular, the eigenstates

constituting the ground-state Kramers’ doublet take the form

|χ−S〉 =
S−1/2∑

k=0

〈−S + 2k|χm〉| − S + 2k〉,

(15)

|χS〉 =
S−1/2∑

k=0

〈S − 2k|χm〉|S − 2k〉,.

from which one concludes that the system’s spin can be

trapped in one of two distinguishable spatial configurations

with respect to the zth axis, referred to also as the system’s

Left electrode Right electrode

easy axis

hard axis

z

x
y

Spin impurity

)b()a(

Right electrodeLeft electrode

(c)

FIG. 1. (Color online) (a) Schematic depiction of the system under consideration. Transport of electrons between the left and right electrodes

(q = L,R) appears due to an external bias voltage δV (µ0 is the electrochemical potential at equilibrium), and/or due to the difference δT

between electrodes’ temperatures Tq . Note that for the sake of clarity we assume here that spin accumulation is absent, and consequently

δVS = 0. Different temperatures of electrodes are delineated here with the use of the Fermi-Dirac distribution functions fq (ε), which are

smeared out dissimilarly around the electrochemical potentials µq of the electrodes. Right panel represents graphically some examples of

different possible spin-conserving (b) and spin-flip (c) electron tunneling processes. In particular, we specify that fine-dashed lines in (b) stand

for direct tunneling of electrons between the electrodes, while dotted lines in (c) symbolize single-electrode tunneling processes.
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easy axis.1 In the following, we will use the index m only

when necessary to avoid any confusion.

Electrodes are treated as reservoirs of itinerant and nonin-

teracting electrons, and are described by the Hamiltonian

Hel =
∑

qkσ

εqkσa
q†
kσa

q

kσ , (16)

with εqkσ denoting the conduction electron energy in the

qth electrode (q = L for the left and q = R for the right

electrode, respectively), k standing for a wave vector, and

σ being the electron-spin index. Furthermore, a
q†
kσ (a

q

kσ ) is

the relevant electron creation (annihilation) operator for the

qth electrode. Generally, both electrodes are characterized by

a spin-dependent density of states (DOS),
∑

k δ(ε
q

kσ − ω) =
ρ

q
σ (ω). Importantly, for the problem under discussion DOS of

at least one of the electrodes has to be energy dependent and

asymmetric around the Fermi level in order to obtain a nonzero

thermopower. The magnetic properties of the qth electrode

will be described by the corresponding spin-polarization

coefficient, Pq , defined at the system’s Fermi level µ0 as

Pq =
ρ

q

↑(µ0) − ρ
q

↓(µ0)

ρ
q

↑(µ0) + ρ
q

↓(µ0)
. (17)

Finally, electron tunneling processes between the elec-

trodes are described by the Appelbaum Hamiltonian

[88,89,109–112],

HT =
∑

qkk′α

{
Td a

q†
kαa

q̄

k′α +
∑

q ′β

Jqq ′ σ αβ · S a
q†
kαa

q ′

k′β

}
. (18)

In the equation above q should be understood as L ≡ R

and R ≡ L. Furthermore, σ = (σx,σy,σz) and σi (i = x,y,z)

denote the Pauli matrices. The first term of Eq. (18) represents

direct tunneling of electrons between the electrodes, while the

second term takes into account the fact that during tunneling

an electron can interact magnetically with the impurity either

via exchange coupling or direct dipolar interactions [103];

see Figs. 1(b) and 1(c). The former processes are then

described by the tunneling parameter Td, whereas the latter

ones are described by the exchange parameter Jqq ′ , with both

parameters assumed to be real, isotropic, and independent

of energy and electrodes’ spin polarization. It is convenient

to introduce the following parametrization for Td and Jqq ′ :

Td = αdK and Jqq ′ = νqνq ′J , with νq being a dimensionless

factor quantifying the coupling between the impurity’s spin

and the qth electrode, and J = αexK . Thus, K becomes

the key, experimentally relevant parameter [89,112], whereas

αex/αd establishes a relationship between the processes of

direct electron tunneling and those during which the spin of a

tunneling electron can be reversed.

1Note that for an integer spin S the ground state would be

split even in the absence of an external magnetic field, and as

a symmetric admixture of states |±S〉,| ± S ± 2〉, . . . ,|0〉 it would

prefer orientation in the plane perpendicular to the system’s easy

axis.

B. Transport characteristics

In the following we assume weak coupling between the

electrodes and the impurity. Charge, spin, and energy transport

can be then described within the approach based on the

corresponding master equation. Balance of respective flows

associated with tunneling of electrons (e < 0) out/to each

electrode gives the relevant currents in the following form (see

also Appendix A for a more explicit form of these expressions):

(i) charge current IC = (IL
C − IR

C )/2,

I
q

C = e
∑

kk′

∑

σσ ′

∑

χχ ′

Pχ

{
I

|qkσ,χ〉
|qk′σ ′,χ ′〉 − I

|qkσ,χ〉
|qk′σ ′,χ ′〉

}
; (19)

(ii) spin current IS = (IL
S − IR

S )/2,

I
q

S =
�

2

∑

q ′

∑

kk′

∑

α

∑

χχ ′

Pχ

{
I

|qk↑,χ〉
|q ′k′α,χ ′〉 − I

|q ′kα,χ〉
|qk′↑,χ ′〉

−
[
I

|qk↓,χ〉
|q ′k′α,χ ′〉 − I

|q ′kα,χ〉
|qk′↓,χ ′〉

]}
; (20)

(iii) heat current IQ = (IL
Q − IR

Q )/2,

I
q

Q =
∑

q ′

∑

kk′

∑

σσ ′

∑

χχ ′

Pχ

{(
ε

q

kσ − µq
σ

)
I

|qkσ,χ〉
|q ′k′σ ′,χ ′〉

−
(
ε

q ′

kσ + �χχ ′ − µ
q

σ ′

)
I

|q ′kσ,χ〉
|qk′σ ′,χ ′〉

}
, (21)

where �χχ ′ = εχ − εχ ′ and

I
|qkσ,χ〉
|q ′k′σ ′,χ ′〉 = W

|qkσ,χ〉
|q ′k′σ ′,χ ′〉fqσ

(
ε

q

kσ

)[
1 − fq ′σ ′

(
ε

q ′

k′σ ′

)]
. (22)

In Eqs. (19)–(21), Pχ represents the probability of finding

the impurity in the magnetic state |χ〉, and fqσ (ε) = {1 +
exp[(ε − µ

q
σ )/Tq]}−1 is the Fermi-Dirac distribution function

for the qth electrode, with Tq denoting the temperature

of the electrode expressed in units of energy (i.e., kB ≡
1). Moreover, the notation for the system’s complete state

|qkσ,χ〉 ≡ |qkσ 〉el ⊗ |χ〉imp is used, and the Fermi golden

rule transition rates are given by

W
|i〉
|j〉 =

2π

�
|〈j |Hint|i〉|2δ(Ej − Ei), (23)

where |i〉 and |j 〉 are the initial and final states, respectively,

while Ei and Ej denote the corresponding total energy

of the system. If, e.g., |i〉 = |qkσ,χ〉, then Ei = Eqkσ,χ =
ǫ

q

kσ + µ
q
σ + εχ , with ǫ

q

kσ being the conduction electron energy

measured with respect to the electrochemical potential µ
q
σ ,

ǫ
q

kσ ≡ ε
q

kσ − µ
q
σ , and εχ standing for the eigenenergy of the

impurity in the state |χ〉; see Fig. 1(a). Finally, the spin-

dependent electrochemical potential of the qth electrode can be

written as µ
q
σ = µ0 + eηq(δV + ησ δVS)/2, with ηL(R) ≡ ±1

and η↑(↓) = ±1, together with δV and δVS representing the

voltage and spin bias, respectively.

It is worthwhile to note that Eqs. (19) and Eq. (20) are

generally valid for arbitrary voltage and thermal bias. In

turn, Eq. (21) for the heat current is valid in the limit of

δV → 0 and δVS → 0. Moreover, the energy factor in Eq. (21)

corresponds to the energy measured from the spin-dependent

electrochemical potential µ
q
σ of the qth electrode.2 Finally,

2For other possible definitions of a heat current see Sec. 1.3 of

Ref. [1] or Sec. 3.9B of Ref. [92].
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it should be noticed that Eqs. (20) and (21) involve both

single- (q = q ′) and two-electrode (q 
= q ′) electron transfer

processes. In the case of energy transport, the single-electrode

processes contribute only if scattering on the impurity leads to

a change in the electron energy.

In order to make use of Eqs. (19)–(21) one also needs to

know the probabilities of finding the impurity in a specific

magnetic state |χ〉, which here are determined from the set of

stationary master equations

∀
χ

∑

χ ′

∑

qq ′

{
Pχ ′γ

qq ′

χ ′χ − Pχγ
qq ′

χχ ′

}
= 0, (24)

with the probability normalization condition
∑

χ Pχ = 1.

The golden rule transition rate γ
qq ′

χχ ′ =
∑

kk′
∑

σσ ′ I
|qkσ,χ〉
|q ′k′σ ′,χ ′〉

between two different spin states |χ〉 and |χ ′〉 accompanying

tunneling of a single electron between the electrodes q and q ′

is given by

γ
qq ′

χχ ′ =
2π

�
K2

(
αqq ′

ex

)2 ∑

σσ ′

�
(0)qq ′

σσ ′ (�χχ ′)
{
δσ ′σ

[
δσ↓|S−

χ ′χ |2

+ δσ↑|S+
χ ′χ |2

]
+ δσ ′σ

∣∣Sz
χ ′χ

∣∣2}
, (25)

where α
qq ′

ex ≡ αexνqνq ′ , S
k
χ ′χ ≡ 〈χ ′|Sk|χ〉 for k = z,±, and

�
(n)qq ′

σσ ′ (�χχ ′) =
∫

dωρq
σ (ω)ρ

q ′

σ ′(ω + �χχ ′ )(ω − µ0)n

× fqσ (ω)[1 − fq ′σ ′(ω + �χχ ′ )]. (26)

We remind that Eqs. (19)–(20) are valid for arbitrary T

and also in the nonlinear regime, while Eq. (21) is valid for

δV → 0 and δVS → 0, with no restriction on δT . Below we

will linearize these equations with respect to all variables,

i.e., with respect to δV , δVS , and δT . Apart from this, we

restrict our considerations to the regime of low T , T ≪ (2S −
1)D. However, the latter restriction is essential only in the

anisotropic case, D > 0, and is irrelevant for the isotropic case

(D = E = 0) and for the case of no impurity in the barrier.

C. Linear-response regime: Kinetic coefficients

In the regime of linear response with respect to the voltage

δV , spin voltage δVS, and thermal bias δT , the formulas for

charge (IC), spin (IS), and heat (IQ) currents can be written in

the following general form [1,92]:



IC

IS

IQ


=




e2L00 e2L01 eL02/T

e�L10/2 e�L11/2 �L12/(2T )

eL20 eL21 L22/T






δV

δVS

δT


, (27)

where Lnk are the relevant kinetic coefficients that satisfy the

Onsager relation [113,114], Lnk = Lkn. Interestingly enough,

by assuming additionally T ≪ (2S − 1)D (for D > 0), then

only the impurity’s ground-state doublet |χ±S〉 plays a role, as

the transitions to excited spin states are energetically forbid-

den. Nevertheless, due to the transverse magnetic anisotropy,

spin-flip scattering processes within this ground doublet are

still allowed.

The explicit form of the kinetic coefficients in Eq. (27)

can be obtained by linearization of the expressions (19)–(21)

for the currents, IC, IS, and IQ (for a detailed derivation see

Appendix B). For convenience, we write these coefficients in

the form

L=



L00 L01 L02

L10 L11 L12

L20 L21 L22


≡




L
(c)
00 L

(s)
01 L

(c)
02

L
(s)
10 L

(ss)
11 L

(s)
12

L
(c)
20 L

(s)
21 L

(c)
22


, (28)

with the elements of the matrix given by

L
(c)
nk =

∑

σ

Lσ
nk + L

(c)
nk,↓↑, L

(s)
nk =

∑

σ

ησL
σ
nk + L

(s)
nk,↓↑,

L
(ss)
nk =

∑

σ

Lσ
nk + L

(ss)
↓↑ , (29)

and

Lσ
nk =

π

�

K2

T
ϑ1

∑

χ

[
αd + ησαLR

ex S
z
χχ

]2
F (δn2+δk2)LR

σσ , (30)

L
(c)
nk,↓↑ =

π

�

K2

T

{
ϑ3

(
αLR

ex

)2 ∑

σ

F
(δn2+δk2)LR
σσ

−ϑ2�
(
αLR

ex

)4 ∑

σσ ′

ησησ ′F
(δn2)LR
σσ F

(δk2)LR

σ ′σ ′

}
, (31)

L
(s)
nk,↓↑ = −

π

�

K2

T
ϑ2�

(
αLR

ex

)2

×
∑

qσ

ηqησ

(
αqq

ex

)2
F

(δn2+δk2)LR
σσ F

(0)qq

↑↓ , (32)

L
(ss)
↓↑ =

π

�

K2

T

{
ϑ3

∑

q

(
αqq

ex

)2
F

(0)qq

↑↓

−ϑ2�
∑

qq ′

ηqηq ′
(
αqq

ex

)2(
αq ′q ′

ex

)2
F

(0)qq

↑↓ F
(0)q ′q ′

↑↓

}
, (33)

where F
(n)qq ′

σσ ′ = T φ
(n,0)qq ′

σσ ′ = �
(n)qq ′

σσ ′ (0)|eq, see Eqs. (26) and

(B7), and the subscript “eq” means the quantity to be taken at

δV = δVS = δT = 0. Furthermore, in the above equations �

is defined as

� =
[ ∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′

↑↓ (0)
∣∣
eq

]−1

, (34)

while ϑn (n = 1,2,3) is defined in Table I for isotropic and

anisotropic spins. We remind that in the anisotropic case (D 
=
0 and E 
= 0) only the two degenerate states of lowest energy

are included in the sums over χ due to the condition T ≪
(2S − 1)D, whereas in the isotropic case (D = E = 0) all

TABLE I. Explicit expressions for the auxiliary coefficients ϑn,

where �± = |S+
χ−SχS

|2 ± |S−
χ−SχS

|2.

ϑn

n Isotropic spin impurity Anisotropic spin impurity

1 2

2S+1
1

2 4

3
S(S + 1)

�2
−

�+
3 4

3
S(S + 1) �+

235438-6



SPIN-DEPENDENT THERMOELECTRIC EFFECTS IN . . . PHYSICAL REVIEW B 89, 235438 (2014)

states are taken into account as they all are degenerate and the

condition T ≪ (2S − 1)D is irrelevant.

The kinetic coefficients consist of two terms; see Eqs. (29).

The first term originates from electron tunneling with con-

served electron spin, while the second term in each coefficient

takes into account tunneling associated with reversal of

electron spin (and thus also with a change in magnetic

state of the impurity). Note that for an anisotropic spin

impurity with vanishing transverse magnetic anisotropy, E →
0 while D > 0, one finds S

±
χ−SχS

= 0 and thus only the

components Lσ
nk of the kinetic coefficients in Eqs. (29)

survive, whereas the terms given by Eqs. (31)–(33) turn

to zero.

To find numerical values of the kinetic coefficients Lnk ,

we need to calculate all the factors of the type F
(n)qq ′

σσ ′ .

The key problem is that this requires evaluation of energy

integrals involving DOS of electrodes, which in general can

be an arbitrary function of energy. Taking into account the

fact that transport properties at low temperature and in the

linear-response regime are determined by the electrodes’ DOS

in the vicinity of the equilibrium electrochemical potential µ0,

we expand the spin-dependent DOS of the qth electrode into

a series,

ρq
σ (ω) =

∑

k

[
ρ

q
σ (µ0)

](k)

k!
(ω − µ0)k, (35)

with

[
ρq

σ (µ0)
](k) =

∂kρ
q
σ (ω)

∂ωk

∣∣
ω=µ0

. (36)

This, in turn, allows for calculating the energy integrals in

question,

F
(n)qq ′

σσ ′ =
∑

kl

[
ρ

q
σ (µ0)

](k)

k!

[
ρ

q ′

σ ′(µ0)
](l)

l!

×
∫

dω(ω − µ0)n+k+lf (ω)[1 − f (ω)]

=
∑

kl

[
ρ

q
σ (µ0)

](k)

k!

[
ρ

q ′

σ ′(µ0)
](l)

l!
�n+k+lT

n+k+l+1,

(37)

where

�n = (−1)n/2+1(1 − 21−n)(2π )nBn, (38)

and Bn stands for the Bernoulli number. It can be noticed that

�n = 0 if n is an odd number, while first several even terms

are �0 = 1, �2 = π2/3, �4 = 7π4/15, �6 = 31π6/21, etc.

Having found all the kinetic coefficients, one can calcu-

late the experimentally measurable coefficients discussed in

Sec. II, which are directly related to the kinetic coefficients. In

particular, Eqs. (1)–(9) can be expressed in terms of the kinetic

coefficients Lnk as follows.

(i) Conductances:

G = e2L00 = G↑ + G↓ + G
(c)
↓↑,

Gm = e2L01 = G↑ − G↓ + G
(s)
↓↑,

(39)

Gm
S =

e�

2
L10 =

�

2e
[G↑ − G↓ + G

(s)
↓↑],

GS =
e�

2
L11 =

�

2e
[G↑ + G↓ + G

(ss)
↓↑ ],

where Gm and Gm
S are related as Gm

S = (�/2e)Gm. Above,

Gσ = e2Lσ
00 is the electric conductance of the spin-σ channel

due to spin conserving electron tunneling between the left

and right electrodes, whereas G
(c)
↓↑ = e2L

(c)
00,↓↑ and G

(s/ss)
↓↑ =

e2L
(s/ss)
↓↑ represent a contribution to conductance stemming

from tunneling with spin-flip processes. Note that for the (ss)

component we have only single-electrode processes. Such

processes modify the spin state of the molecule without

transferring any charge across the junction, or in other words,

they transfer spin without transferring charge.

(ii) Peltier coefficients: using the notation � ≡ �0 and

�S ≡ �1, one can write

�n =
[
−

1

|e|

]δn0
[

2

�

]δn1L2n

Lnn

for n = 0,1. (40)

(iii) Thermal conductance:

κ =
1

T

[
L22 −

(L02)2

L00

]
. (41)

(iv) Thermopowers: using the notation S ≡ S0 and SS ≡
S1, one finds

Sn = −
1

|e|T
Ln2

Lnn

for n = 0,1. (42)

IV. RESULTS AND DISCUSSION

As already mentioned in the Introduction, thermoelectric

effects become revealed when DOS is energy dependent

around the Fermi level and there is a particle-hole asymmetry.

In the conceptually simplest case assumed here, DOS in one

electrode is constant on the energy scale of interest, while the

DOS of the other electrode is a linear function of energy. For

this reason, the DOS of the left electrode in the vicinity of the

Fermi level is assumed to be constant and spin dependent,

ρL
σ (ω) ≈ ρL

σ (µ0) =
ρL

2
[1 + ησPL], (43)

whereas the right electrode is assumed to be nonmagnetic with

the DOS linearly dependent on energy around the Fermi level,

ρR
σ (ω) ≈ ρR

σ (µ0) +
[
ρR

σ (µ0)
](1)

(ω − µ0)

=
ρR

2
[1 + xR(ω − µ0)], (44)

with xR ≡ [ρR(µ0)](1)/ρR , where we took into account that

[ρR
↑ (µ0)](1) = [ρR

↓ (µ0)](1) = [ρR(µ0)](1)/2. In the above equa-

tions ρL and ρR denote the total DOS at the Fermi level in the

left and right electrodes, respectively. The above approxima-

tions correspond to a situation where the left electrode has
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a relatively flat DOS around the Fermi level, while the right

electrode is characterized by DOS with a steep slope at the

Fermi level. Although the coefficient xR can in general be

both positive and negative, the DOS has to be a non-negative

function of energy, ρR
σ (ω) ≥ 0. This imposes some restrictions

on the energy range where this approximation is applicable.

Moreover, since the electrons and holes are distributed around

the Fermi level in the energy window of the order of T ,

this imposes also the following condition on the temperature:

xRT ≪ 1.

Taking the above into account, one finds

F
(n)LR
σσ ′ =

1

4
ρRρL[1 + ησPL]

×{�nT
n+1 + xR�n+1T

n+2}. (45)

Since we have assumed that the right electrode is nonmagnetic,

the second spin index in F
(n)LR
σσ ′ plays in fact no role, and thus

we omit it henceforth,

F (0)LR
σ =

1

4
ρLρR[1 + ησPL]T ,

F (1)LR
σ =

π2

12
ρLρRxR[1 + ησPL]T 3, (46)

F (2)LR
σ =

π2

12
ρLρR[1 + ησPL]T 3.

Analogous expressions can be derived for single-electrode F
functions,

F
(0)LL
↑↓ =

(ρL)2

4

[
1 − P 2

L

]
T ,

(47)

F
(0)RR
↑↓ =

(ρR)2

4

[
1 +

π2

3
x2

RT 2

]
T .

In consequence, the above assumptions allow us to write

the matrix L in the form

L =




L0 Ls

π2

3
xRT 2L0

Ls L1

π2

3
xRT 2Ls

π2

3
xRT 2L0

π2

3
xRT 2Ls L2




, (48)

with Ln (for n = 0,1,2,s) having the form

Ln = ŴλP
δns

L

[
π2

3
T 2

]δn2[
Tsc + T

(n)
sf

]
, (49)

where Ŵ = πK2ρ2/� with ρ ≡ ρL, and λ = ρR/ρL. Further-

more,

Tsc ≡ (αd )2 +
ϑ1

2

(
αLR

ex

)2 ∑

χ

(
S

z
χχ

)2
(50)

represents the spin-conserving part of the kinetic coefficients.

The first term of Tsc corresponds to the direct tunneling of

electrons between the electrodes, whereas the second term

accounts for two-electrode tunneling processes during which

electrons traversing the barrier interact via exchange coupling

with the impurity, keeping, however, their spin orientation

unchanged. On the other hand, the spin-flip part T
(n)

sf stands

for all tunneling processes (including both single- and two-

electrode ones) in which the spin of an electron becomes

reversed due to scattering on the spin impurity,

T
(0)

sf =
(
αLR

ex

)2
{

ϑ3

2
−

ϑ2P
2
L

(
αLR

ex

)2
(
α̃ex

)2
}
, (51)

T
(1)

sf =
(
αLR

ex

)2 ϑ3(α+
ex)2

2(̃αex)2

+
1

4(̃αex)2
{ϑ3(α+

ex)4 − ϑ2(α−
ex)4}, (52)

T
(2)

sf =
(
αLR

ex

)2
{

ϑ3

2
−

π2

3
x2

RT 2
ϑ2P

2
L

(
αLR

ex

)2

(̃αex)2

}
, (53)

T
(s)

sf = −
(
αLR

ex

)2 ϑ2(α−
ex)2

2(̃αex)2
, (54)

where

(̃αex)2 = 2
(
αLR

ex

)2 + (α+
ex)2 (55)

and

(α±
ex)2 =

1

λ

(
αLL

ex

)2[
1 − P 2

L

]
± λ

(
αRR

ex

)2
[

1 +
π2

3
x2

RT 2

]
. (56)

When deriving the above formulas, we also took into account

that � = 4/λTρ2 (̃αex)2. One can notice that the effective

coefficients (α±
ex)2 have a clear physical meaning, namely they

represent a contribution from single-electrode spin-exchange

tunneling processes. In turn, such processes involving two

different electrodes (i.e., for electrons traversing the junction)

are described by (αLR
ex )2. Interestingly enough, it can be

immediately seen that, unlike other coefficients, T
(1)

sf apart

from the part corresponding to tunneling of electrons between

the left and right electrodes includes also the term originating

from single-electrode tunneling processes. The physical notion

of this observation will be discussed in detail in further

sections.

Employing the above form of the L matrix, Eq. (48), one

obtains the following.

(i) Conductances:

G =




e2L0 e2Ls

e�

2
Ls

e�

2
L1


. (57)

(ii) Peltier coefficients:

� = −
π2

3|e|
xRT 2 and �S = −

2|e|
�

Ls

L1

�. (58)

(iii) Thermal conductance:

κ =
1

T

[
L2 −

(
π2

3
xRT 2

)2

L0

]
. (59)

(iv) Thermopowers:

S = −
π2

3|e|
xRT and SS =

Ls

L1

S =
Gm

S

GS

S. (60)
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(v) Figures of merit:

ZT =
L0

(
π2

3

)2
x2

RT 4

L2 − L0

(
π2

3

)2
x2

RT 4
(61)

and

ZTS =
L2

s

L1L0

ZT = −
2|e|
�

(
Gm

S

)2

GGS

ZT. (62)

Combining Eqs. (58) and (60), one straightforwardly gets

the Thompson’s second relation [114] and its spin analog,

which in general establish a connection between the respective

Peltier and Seebeck effects,

� = ST and �S = −
2|e|
�

SST . (63)

Since the conventional Peltier coefficient � and thermopower

S are independent of the specific properties of the spin impu-

rity, such as a spin number and values of uniaxial and transverse

magnetic anisotropy constants, in the following discussion

we focus exclusively on its spin-dependent counterparts. In

addition, because spin-dependent Peltier coefficient �S is

generally related to a spin-dependent thermopower SS via

Eq. (63), we focus mainly only the latter one.

A. Absence of magnetic impurity

The above formulas are general in the sense that they apply

to anisotropic and isotropic impurities. Before considering

these two situations, it is instructive to analyze first the simplest

case of a magnetic tunnel junction (MTJ) without spin impurity

in the barrier, which essentially corresponds to setting αex = 0

in the above formulas. In such a case the kinetic coefficients

take a simple form,

L0 = L1 =
1

PL

Ls =
3

π2T 2
L2 = Ŵλ(αd)2. (64)

Assuming αd = 1, one can write the conductance matrix

for MTJ as follows:

GMTJ = Ŵλ




e2 e2PL

e�

2
PL

e�

2


. (65)

Since Ŵλ = πK2ρLρR/�, the conductance matrix GMTJ in the

model under consideration is proportional to the product of the

DOS at the Fermi level in the two electrodes and to the square

of the direct tunneling parameter Td ≡ K . In turn, the thermal

conductance is given by

κMTJ =
π2

3
ŴλT

[
1 −

π2

3
x2

RT 2

]
= L0G

MTJT [1 + |e|xR�],

(66)

where the first term represents the Wiedemann-Franz (WF)

law that relates the thermal and electrical conductances as

κ = L0GT , with L0 = π2/(3e2) being the Lorentz number

(recall that in this paper we set kB ≡ 1). The WF law applies

for instance to transport in Fermi-liquid bulk metals, but it

generally breaks down in nanoscopic systems [51,115], though

it can be recovered in the situation when the system reaches

an effective Fermi-liquid state, e.g., as in strongly correlated

quantum dots when the Kondo effect occurs [26,29,116]. Due

to the presence of the second term in Eq. (66), the WF law

in the current situation is generally violated. However, this

deviation is rather small in the applicability range of the model,

xRT ≪ 1.

As mentioned above, the thermopower S is independent of

the presence of the impurity, and is given by the formula (60).

It is also worth noting that the formula for thermopower SMTJ,

Eq. (60), obeys Mott’s formula [10,117]

SMTJ = −|e|L0T
∂ ln G(ω)

∂ω

∣∣∣∣
ω=µ0

, (67)

which can be checked by inserting G(ω) =
(e2πK2/�)

∑
σ ρL

σ (ω)ρR
σ (ω) into Eq. (67), with ρ

L/R
σ (ω)

given by Eqs. (43) and (44). Next, with the use of Eq. (64),

one finds the spin thermopower

SMTJ
S = PLS

MTJ, (68)

with SMTJ given by Eq. (60), and the figures of merit

ZTMTJ =
π2

3
x2

RT 2

1 − π2

3
x2

RT 2
and ZTMTJ

S = P 2
L ZTMTJ. (69)

As one can easily note, the parameter playing a major

role in the formulas above is xR describing the linear term

in the Taylor expansion of DOS in the right electrode,

Eq. (44). Employing the expression for a thermopower S,

Eq. (60), the order of magnitude for xR can be deduced from

available experimental works on thermoelectric transport in

magnetic tunnel junctions and molecular junctions. Recent

experiments on the MgO- [62,64,118–120] and Al2O3-based

[61,63] junctions show that at room temperature |S| can vary

between a few tens of µV/K and several mV/K [63,119], with

typical values oscillating around 50–200 µV/K. These agree

with theoretical values found from analytical considerations

for magnon-assisted tunneling [73] and those obtained from ab

initio studies [121]. On the other hand, in molecular junctions

with a single fullerene molecule (i.e., C60, PCBM or C70)

[41,42] or an aromatic molecule [35–40] embedded, S has

been observed not to exceed usually 30 µV/K at room tem-

perature. Interestingly enough, theoretical predictions [45,46]

for some molecules from the latter group suggest that by tuning

a chemical potential one can reach |S| as large as 150 µV/K.

Consequently, assuming a typical value of |S| at room temper-

ature to be of the order of 100 µV/K, we find |xR| ∼ 10 eV−1.

In Fig. 2 we present the thermal conductance κMTJ, ther-

mopower SMTJ, and figure of merit ZTMTJ as a function of xRT

(effectively as a function of temperature) for several values of

the parameter xR . From the corresponding formulas follows

that the dependence on xRT is roughly linear in the temperature

range where the description is valid, xRT ≪ 1. Moreover, this

dependence is independent on xR for thermopower and figure

of merit, as follows from the corresponding analytical formula,

and is also clearly seen in Figs. 2(b) and 2(c). The situation is

different for the thermal conductance, where different values

of the parameter xR correspond to different curves, as can

be clearly seen in Fig. 2(a). This is due to the prefactor T

in Eq. (66). Note that the spin thermopower SMTJ
S is now

proportional to SMTJ; see Eq. (68).

235438-9
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FIG. 2. (Color online) Dependence of the thermal conductance

κMTJ, thermopower SMTJ, and figure of merit ZTMTJ on xRT (effec-

tively on temperature) for a junction without a magnetic impurity,

shown for several values of the parameter xR which describes

the linear term in the Taylor expansion of the right electrode’s

DOS around the Fermi level. The spin thermopower SMTJ
S is now

proportional to SMTJ.

B. Magnetic impurity with spin S

Let us now turn to the situation with the spin impurity in

the barrier. Transport properties of the system depend then

on a number of parameters, including the asymmetry of the

coupling between the impurity and electrodes, quantified in

the following by νas ≡ νR/νL and the ratio λ = ρR/ρL of the

electrodes’ DOS at the Fermi level. In order to facilitate the

discussion, we introduce an additional auxiliary parameter A,

defined as

A = λν2
as, (70)

which describes an effective asymmetry of the junction

containing a spin impurity.

The conductance matrix G, see Eq. (57), can be formally

separated into two parts as G = Gsc + Gsf . The first term

expressed in terms of the asymmetry parameters has the form

Gsc = TscGMTJ

= Ŵ

{
λ +

ϑ1

2
α2

exν
4
LA

∑

χ

(
S

z
χχ

)2

}


e2 e2PL

e�

2
PL

e�

2




(71)

and represents the contribution from spin-conserving electron

tunneling processes, with GMTJ given by Eq. (65). The second

term, in turn, takes the form

Gsf = Ŵα2
exν

4
L




e2T̃
(0)

sf e2PLT̃
(s)

sf

e�

2
PLT̃

(s)
sf

e�

2
T̃

(1)
sf


 (72)

and is the contribution to the conductance which stems from

spin-flip scattering of electrons on the spin impurity, with

T̃
(0)

sf =
ϑ3

2
A − ϑ2

A2P 2
L

A[A + 2] +
[
1 − P 2

L

] , (73)

T̃
(1)

sf =
ϑ3

2
A

A2 +
[
1 − P 2

L

]

A[A + 2] +
[
1 − P 2

L

]

+
1

4
[ϑ3 − ϑ2]

A4 +
[
1 − P 2

L

]2

A[A + 2] +
[
1 − P 2

L

]

+
1

2
[ϑ3 + ϑ2]

A2
[
1 − P 2

L

]

A[A + 2] +
[
1 − P 2

L

] , (74)

T̃
(s)

sf =
ϑ2

2
A

A2 −
[
1 − P 2

L

]

A[A + 2] +
[
1 − P 2

L

] . (75)

In general, the processes of spin-flip scattering on the impu-

rity correspond to opening new channels for transport through

the junction. In the case of the spin-conserving scattering

processes all the 2S + 1 channels become available for an

isotropic spin impurity, and each impurity state |χ〉 gives a pos-

itive contribution to the conductance, (ϑ1/2)(α2
exν

4
LA)(Sz

χχ )2 ≥
0. For an anisotropic impurity, in turn, only two channels

contribute to the conductance (recall the assumption discussed

above). The situation is more complicated for spin-flip scat-

tering processes; see Eqs. (73)–(75), which lead to mixing of

spin channels.

The thermal conductance, in turn, is given by the following

formula:

κ

κMTJ
= 1 + α2

exν
4
Lν2

as

{
ϑ1

2

∑

χ

(
S

z
χχ

)2 +
ϑ3

2

}
. (76)

Finally, the thermopower S is given by Eq. (60), while the

figure of merit can be written as

ZT

ZTMTJ
= 1 −

2α2
exν

4
L

2λTsc + ϑ3α2
exν

4
LA

×
ϑ2A

2P 2
L

A[A + 2] +
[
1 − P 2

L

] . (77)

The spin thermopower SS, Eq. (60), is determined by S and

the ratio Gm
S /GS, while the spin figure of merit ZTS, Eq. (62),

depends on ZT and the ratio (Gm
S )2/(GGS). Both, SS and ZTS

can be expressed in terms of the asymmetry parameter A, but

the corresponding formulas are cumbersome and will not be

presented here.

In the following we distinguish between the case of

isotropic (D = E = 0) and anisotropic (D 
= 0 and E 
= 0)

spin impurity, and we begin the discussion with the former

case.
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1. The isotropic case (D = E = 0)

For an isotropic spin impurity, D = E = 0, the above

formulas can be further simplified. Taking into account the

explicit form of the parameters ϑn (see Table I), one obtains

T̃
(0)

sf = T̃
(1)

sf =
2

3
S(S + 1)A

A2 + [1 + 2A]
[
1 − P 2

L

]

A[A + 2] +
[
1 − P 2

L

] , (78)

T̃
(s)

sf =
2

3
S(S + 1)A

A2 −
[
1 − P 2

L

]

A[A + 2] +
[
1 − P 2

L

] . (79)

Let us consider first the situation of a fully symmetric junction,

i.e., when λ = 1 (the symmetry with respect to DOS, ρL =
ρR) and νas = 1 (the symmetry with respect to the coupling

between the impurity and electrodes, νL = νR = 1), which

corresponds to A = 1. The above formulas reduce then to the

following ones:

T̃
(0)

sf = T̃
(1)

sf =
2

3
S(S + 1)

4 − 3P 2
L

4 − P 2
L

, (80)

T̃
(s)

sf =
2

3
S(S + 1)

P 2
L

4 − P 2
L

, (81)

so that the conductance matrix takes the form

G = Ŵ

{
1 +

1

3
S(S + 1)α2

ex

}


e2 e2PL

e�

2
PL

e�

2




+
2

3
ŴS(S + 1)α2

ex




e2
4 − 3P 2

L

4 − P 2
L

e2
P 2

L

4 − P 2
L

e�

2

P 2
L

4 − P 2
L

e�

2

4 − 3P 2
L

4 − P 2
L


. (82)

Here, the first and second terms represent the spin-conserving

and spin-flip parts of the conductance, respectively. In turn,

the heat conductance can be written as

κ

κMTJ
= 1 + S(S + 1)α2

ex. (83)

The formulas above have been used to get some numerical

results to be discussed below. In the case of spin thermopower

and spin figure of merit, on the other hand, to obtain the

numerical results we used the general expressions (60)–(62).

The corresponding results for a symmetric junction, A = 1

with λ = νas = 1, are shown in Fig. 3, where all the elements of

the conductance matrix G, electronic contribution to the heat

conductance κ , spin thermopower SS, and figures of merit

ZT and ZTS, normalized to the corresponding quantities for

MTJ without impurity, are shown as a function of the spin

number S for indicated values of the polarization factor PL.

Note that the electrical conductance G is proportional to the

spin conductance GS, and the nondiagonal conductance Gm is

proportional to Gm
S . For the lowest value of S, i.e., S = 1/2,

the contributions from direct tunneling and exchange terms are

comparable and the total conductances are rather small. The

role of exchange term in the tunneling Hamiltonian increases

with increasing S and the conductances grow as ∼S2 with

increasing S. This behavior is clear as the tunneling probability

with exchange interaction between the electron and impurity

is effectively proportional to S2; see the tunneling Hamiltonian
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FIG. 3. (Color online) Diagonal (a) and nondiagonal (b) ele-

ments of the conduction matrix G, electronic contribution to the heat

conductance κ (c), spin thermopower SS (d), figure of merit ZT (e),

and spin figure of merit ZTS (f) shown as functions of the impurity spin

number S for several values of the left electrode’s spin-polarization

parameter PL. Note that the points correspond to spin numbers while

the lines serve merely as a guide for eyes. Remaining parameters:

T = 1 K, xR = 10 eV−1, αd = αex = 1, λ = 1, and νL = νR = 1, so

that A = 1 (i.e., the junction is fully symmetric with respect to DOS

and exchange coupling).

given by Eq. (18). Worth noting is that the nondiagonal

conductances (Gm and Gm
S ) achieve their maximal values for

PL = 1, while the diagonal ones (G and GS) for PL = 0, as one

might expect. Additionally, if the left electrode is nonmagnetic

(PL = 0) the nondiagonal components of the conductance

matrix G vanish.

Unlike the electric conductance G, the electronic contri-

bution to the heat conductance κ , shown in Fig. 3(c), is

independent of the polarization PL, though it grows with

S similarly as G does. By contrast, the spin thermopower

and both figures of merit are decreased in comparison to the

corresponding values for MTJ without the impurity. However,

the reduction in the values of SS and ZTS is inversely

proportional to the spin polarization of the left electrode, i.e.,

for PL → 0 one obtains SS/S
MTJ
S → 0 and ZTS/ZTMTJ

S → 0,

whereas the conventional (charge) figure of merit ZT is

generally diminished as PL grows. Interestingly, the spin

thermopower becomes reduced with increasing spin number

S, which appears due to enhanced spin mixing by spin-flip

transmission processes. The corresponding spin figure of merit

becomes also suppressed with increasing spin number.

Let us now look in more detail at the case of an asymmetric

junction, A 
= 1. Figure 4 presents the relative conductance
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FIG. 4. (Color online) Analogous to Fig. 3, but now the quantities

under consideration are presented for different values of the parameter

λ describing the asymmetry of DOS at the Fermi level on opposite

sides of the junction. In addition, we assume that the spin impurity

is more coupled to the right electrode, i.e., 2νL = νR = 1, so that the

effective asymmetry parameter A is related to λ as A = 4λ. Except

PL = 0.5, all other parameters are as in Fig. 3.

matrix elements, heat conductance, spin thermopower, and

figures of merit as a function of spin number S, similarly as in

Fig. 3 but for different values of the parameters describing

the junction asymmetry. First of all, one can immediately

notice that the relative diagonal conductances, i.e., charge

(G/GMTJ) and spin (GS/GMTJ
S ) ones shown in Fig. 4(a), are

only weakly affected by the change in asymmetry parameters

assumed in Fig. 4. This dependence is much more pronounced

for relative nondiagonal elements of the conductance matrix

in Fig. 4(b), also cf. Eqs. (78) and (79), where a significant

asymmetry of the junction leads to an increase of the relevant

components of G. Apart from this, the variation of all the

conductances with the spin number S resembles that observed

earlier in Fig. 3, so it will not be discussed here. On the

other hand, according to Eq. (76) and Fig. 4(c), the relative

heat conductance is independent of the asymmetry parameter

A. However, one should bear in mind that κMTJ as well as

elements of the conductance matrix GMTJ are actually sensitive

to the asymmetry of the electrodes’ DOS at the Fermi level

characterized by λ; see Eqs. (66) and (65).

The relative spin thermopower, shown in Fig. 4(d), depends

remarkably on the asymmetry parameters: whereas in the

limit of large A [i.e., A ≫ 1; see open circles in Fig. 4(d)]

SS/S
MTJ
S ≈ const, regardless of the value of spin number

S, for small A [i.e., 0 < A ≪ 1, triangles in Fig. 4(d)] SS

significantly varies with S and it can even change its sign.

Employing Eq. (60) one derives

SS

SMTJ
S

=
Gm

S

GS

= PL

Xsc + A2−[1−P 2
L]

A[A+2]+[1−P 2
L]

Xsc + A2+[1+2A][1−P 2
L]

A[A+2]+[1−P 2
L]

, (84)

where the coefficient Xsc is given by

Xsc =
3λ + S(S + 1)α2

exν
4
LA

2S(S + 1)α2
exν

4
LA

. (85)

Since when plotting Fig. 4 we assumed that the parameter νas,

describing the asymmetry of coupling between the impurity

and electrodes, is kept constant, it means that A can in fact be

identified with λ. As a result, the disparate behavior of the spin

thermopower can be understood on the basis of the inequality

of ρL and ρR . It is clear from Eqs. (71)–(75) that whereas

the spin-conserving parts of spin conductances depend on

the DOSs of electrodes in a straightforward way, Gm
S,sc =

PLGS,sc ∝ ρLρR , its spin-flip counterparts exhibit a nontrivial

dependence on these two parameters. Because SS ∝ Gm
S /GS

[note that SMTJ is only proportional to xR(ρR)], its sensitivity

to variations of the ratio ρR/ρL therefore originates from the

spin-flip electron transport; see Eq. (84). In particular, for large

A corresponding to ρR ≫ ρL, one gets

Gm
S,sf

GMTJ
S

= PL

GS,sf

GMTJ
S

=
2

3
PLS(S + 1)α2

exν
4
Lν2

as, (86)

while for small A corresponding to ρR ≪ ρL,

Gm
S,sf

GMTJ
S

= −PL

GS,sf

GMTJ
S

= −
2

3
PLS(S + 1)α2

exν
4
Lν2

as, (87)

so that in the limit of very large S the following approximate

expression for the spin thermopower is found:

lim
largeA

SS/S
MTJ
S = PL,

(88)

lim
smallA

SS/S
MTJ
S = −

1

3
PL.

Interestingly, one finds SS = 0 when Gm
S = 0, which means

that the vanishing of the spin thermopower in Fig. 4(d) occurs

for parameters precluding the flow of spin current when an

electric bias is applied, i.e., the corresponding electric current

is not spin polarized.

In order to complete the above discussion of how the

asymmetry of the junction with a magnetic impurity affects its

thermoelectric properties, we show in Fig. 5 the dependence

of relevant thermoelectric coefficients on both the asymmetry

parameters λ and νas. The white dashed lines signify there the

case of A = 1, separating the regions of large A (A > 1) and

small A (A < 1). One can note that the conventional figure of

merit ZT departs from the corresponding value ZTMTJ for an

empty junction only when A only slightly differs from 1.

2. The anisotropic case (D �= 0 and E �= 0)

Let us now consider the general case of anisotropic

magnetic impurity, D 
= 0 and E 
= 0. Owing to the transverse

anisotropy, electrons tunneling through the barrier can reverse

its spin orientation in the linear-response and low-temperature
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FIG. 5. (Color online) Analogous to Fig. 4, but now the quantities

under consideration are plotted as a function of the effective

asymmetry parameter A. This is achieved by varying parameters

λ and νas (to be precise, we change νL while keeping νR = 1). The

white dashed line represents A = 1. Note that the case of a fully

symmetric junction, i.e., for A = 1 with λ = νas = 1, corresponds in

each plot to the point with coordinates (λ = 1,νL = 1). Except for

PL = 0.5 and S = 5, all parameters as in Fig. 4.

regimes, as we have already mentioned above. We recall that

for the anisotropic case we assume that only the states of the

ground doublet |χ±S〉 participate in transport, which basically

means that results of this section apply for T ≪ (2S − 1)D.

The corresponding numerical results for the conductance

matrix elements, heat conductance, spin thermopower, and

both figures of merit are presented in Fig. 6 for a repre-

sentative value of the uniaxial anisotropy constant D and

several indicated values of the transverse anisotropy E. For

comparison, we also show there the corresponding results for

the case of D = E = 0. Since the matrix elements |S±
χ−SχS

|
and accordingly the coefficients ϑn for n = 2,3 (see Table I)

are usually small, the diagonal and nondiagonal conductances

as well as the heat conductance are almost independent
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FIG. 6. (Color online) Analogous to Fig. 3, but now the quantities

under consideration are plotted for the case of an anisotropic

spin impurity with D = 100 µeV and indicated values of the

transverse magnetic anisotropy E. Except PL = 0.5 and T = 0.1 K,

all parameters are as in Fig. 3. For comparison, black dots representing

the situation of an isotropic (D = E = 0) spin impurity are also

presented.

on the transverse anisotropy. However, they differ from the

corresponding parameters in the limit of isotropic impurity.

This difference is relatively small in the case of diagonal

conductance matrix elements and the heat conductance, but

becomes remarkable for nondiagonal conductance elements.

This may be accounted for by taking into account that though

the summation is now over two states of lowest energy, the

corresponding occupation probability for the two states is

accordingly enhanced as the excited states are not occupied

for T ≪ (2S − 1)D.

Similarly, the spin thermopower and figures of merit are

also weakly dependent on the transverse anisotropy, but

significantly differ from the corresponding parameters in the

isotropic limit. The spin thermopower and both figures of merit

are enhanced in comparison to those in the limit of D = E = 0.

Interestingly, the dependence of spin thermopower and figures

of merit on the spin number S in the anisotropic case is

different from that in the isotropic one. These parameters

initially increase with increasing S for small values of S, and

then become independent on S with a further increase in S.

This difference follows from the fact that only two states of

lowest energy are included in the anisotropic case due to the

energy barrier, while all spin states of the impurity are taken

into account in the isotropic case as they all are degenerate.
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C. Limit of no charge transport between different electrodes

Analysis of Eqs. (49)–(54) leads to the interesting conclu-

sion that even if no transport of electrons is allowed between

two different electrodes, i.e., for αd = 0 and αLR
ex = 0, one

can still have nonzero transport of spin, which is stimulated

by a spin bias δVS, for the contribution to Gsf from T
(1)

sf

[specifically, see the second term of Eq. (52)] remains nonzero,

GS =
e�

2
Ŵα2

exν
4
L

{
1

4
[ϑ3 − ϑ2]

A4 +
[
1 − P 2

L

]2

A2 +
[
1 − P 2

L

]

+
1

2
[ϑ3 + ϑ2]

A2
[
1 − P 2

L

]

A2 +
[
1 − P 2

L

]
}
. (89)

The nonzero spin current in the absence of charge current

appears due to single-electrode tunneling processes. In par-

ticular, of key importance are the processes in which an

electron scattering on the impurity spin changes its spin and

thus transfers to/from the impurity a quantum of angular

momentum. If a spin bias is applied, such processes transfer

effectively angular momentum from one electrode to the

impurity, and then from impurity to the other electrode. This,

in turn, gives rise to a resultant spin current flowing through

the junction. One may say that spin angular momentum is

effectively pumped between the electrodes without actual

charge transport across the junction. It is worth noting that

the crucial role in the process under discussion is played by

the spin impurity which serves as an intermediate reservoir of

angular momentum [122].

Numerical results on the spin conductance GS in the

absence of charge transport are shown in Fig. 7 as a function

of the asymmetry parameters for both isotropic (D = E = 0)

and anisotropic (D 
= 0 and E 
= 0) situations. For the sake

of conceptual simplicity, we focus the discussion on the

possibly smallest, and nontrivial from the point of view of

magnetic anisotropy, half-integer value of the impurity spin

S = 3/2. Furthermore, in order to assess the efficiency of the

spin-transport processes under consideration, we relate GS to

the spin conductance GMTJ
S = (e�/2)Ŵλ of a bare junction, i.e.,

without an impurity (recall Sec. IV A). In that case, however,

transport of spin between electrodes occurs entirely as a result

of the charge transfer, whereas at present no tunneling of

electrons across the junction takes place.

First of all, it can be noticed that for the isotropic spin

impurity the maximum value of GS/GMTJ
S is reached for

A = 1, whereas for the anisotropic one at this point only a

local maximum develops. The origin of this difference can be

explained as follows. From the analysis of Eq. (89) it stems

that the magnetic properties of the spin impurity enter the

expression exclusively via the coefficients ϑ2 and ϑ3; see

Table I. Importantly, in the isotropic case ϑ2 = ϑ3 =
(4/3)S(S + 1), so that only the second term of Eq. (89)

survives, and for S = 3/2 we obtain [ϑ3 + ϑ2]/2 = 5. On

the other hand, in the anisotropic case ϑ2 
= ϑ3, and using

definitions given in Table I we find

1
4
[ϑ3 − ϑ2] = |S+

χ−SχS
|2|S−

χ−SχS
|2,

(90)
1
2
[ϑ3 + ϑ2] = |S+

χ−SχS
|4 + |S−

χ−SχS
|4,
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FIG. 7. (Color online) Spin transport in the absence of electron

tunneling between left and right electrodes for the impurity of spin

S = 3/2. (a),(b) Linear-response spin conductance GS shown as

a function of the parameters λ (the asymmetry of right/left DOS

at the Fermi level) and νL (the coupling of the spin impurity to

the left electrode) for the spin polarization of the left electrode

PL = 0.5. Note that for practical reasons, here we normalize GS

by its value GMTJ
S = (e�/2)Ŵλ for the case of a junction without the

impurity. However, one should bear in mind the crucial difference

between GS and GMTJ
S , namely that the latter is associated with

charge transport whereas the former is not. Panels (c) and (d)

present cross sections of (a) and (b), respectively, for indicated values

of νL. (e),(f) Spin conductance GS plotted for different values of

the spin-polarization parameter PL and νL = 0.5. Left/right panel

corresponds to the isotropic/anisotropic spin impurity. Except for

T = 0.1 K and νR = 1, all parameters are as in Fig. 3.

with

|S+
χ−SχS

|2 =
(
D −

√
D2 + 3E2

)2

D2 + 3E2
, (91)

and

|S−
χ−SχS

|2 =
9E2

D2 + 3E2
. (92)

We emphasize that the two above formulas hold only for S =
3/2, and no generalization to an arbitrary S is possible. For the

anisotropy parameters D and E used in the right panel of Fig. 7
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we get [ϑ3 − ϑ2]/4 ≈ 0.008 and [ϑ3 + ϑ2]/2 ≈ 0.4. It can

also be easily checked that the absence of transverse magnetic

anisotropy (E = 0) leads to |S±
χ−SχS

|2 = 0. In consequence, for

A ≈ 1 the first term of GS, Eq. (89), contributes negligibly.

The situation changes notably when A differs significantly

from 1 and the term in question becomes determinative. The

key observation is that whereas for the isotropic spin impurity

the maximal value of the spin conductance GS = GMTJ
S is

achieved only for a symmetric junction (A = 1 for λ = νas =
1) and GS < GMTJ

S otherwise, see Figs. 7(a) and 7(c), for the

anisotropic spin impurity it is possible to obtain GS > GMTJ
S by

allowing for the asymmetry of the junction; see Figs. 7(b) and

7(d). As a result, the pumping of angular momentum between

electrodes via the anisotropic spin impurity without charge

transport seems to be more effective than the spin transport

associated with charge transport in a conventional magnetic

tunnel junction. In addition, it is interesting to note that the

spin conductance decreases with increasing spin polarization

PL of the electrode, and achieves maximum for zero spin

polarization of the left electrode, PL = 0.

V. SUMMARY AND CONCLUSIONS

We have considered electronic transport and thermoelectric

properties of a magnetic tunnel junction with a single magnetic

impurity embedded in the barrier. This corresponds, for

instance, to a magnetic tip above a molecule located on

a substrate. The molecule was described by a giant spin

Hamiltonian with uniaxial and transverse components of

magnetic anisotropy, while the tunneling Hamiltonian was

taken in the form which included direct tunneling between

the electrodes as well as tunneling with exchange interaction

between the electrons and molecule.

The key objective was a description of spin related effects

in electronic transport and thermoelectricity, like spin Peltier

and spin Seebeck effects. The analysis was limited to a linear-

response regime and elastic-scattering processes. A particular

attention was paid to the role of spin-flip scattering of electrons

on the impurity during tunneling between the electrodes.

Two situations were distinguished: isotropic, D = E = 0, and

anisotropic, D 
= 0 and E 
= 0, ones. To exclude inelastic

tunneling processes, the temperature in the anisotropic case

was limited to temperatures smaller than the zero-field splitting

energy.

We have shown that the transverse anisotropy (for an

anisotropic spin impurity) has a minor influence on the charge

and spin conductance as well as on the thermal conductance

and thermoelectric parameters (spin thermopower and spin

figure of merit). However, these transport and thermoelectric

coefficients differ from the corresponding ones in the isotropic

case, and this difference is especially remarkable for the non-

diagonal elements of the conductance matrix. The difference

in the conductances stems from the anisotropy barrier which

appears in the anisotropic case and which limits the number

of states participating in spin-conserving transport processes.

In the case of an isotropic spin impurity, on the other hand,

all states contribute to transport. It is also worth noting that

the ratio of thermal conductance in the isotropic case to the

thermal conductance of a bare junction (i.e., without a spin

impurity) is independent of the electrode’s polarization. The

corresponding ratio for diagonal and nondiagonal elements

of the conductance matrix depend on spin polarization PL,

and this ratio for nondiagonal elements reaches maximum for

PL = 1, while for diagonal elements for PL = 0.

As a special case, we have also analyzed the situation

when a spin current stimulated by a spin bias can flow

through the junction in the absence of a charge current. This

corresponds to the situation when the external electrodes are

exchange-coupled to the molecule, and there are no electron

tunneling processes (neither direct nor with scattering on the

impurity) between left and right electrodes. Spin current can

then flow through the molecule in a biased system due to

single-electrode tunneling processes, and thus this spin current

is not associated with any charge transport. Interestingly, it has

been shown that in the case of an asymmetric junction, where

the asymmetry is either due to different DOSs at the Fermi level

in both electrodes or due to different exchange coupling of

the impurity with electrodes, the mechanism of spin transport

under discussion can be more efficient than spin transport

associated with charge transfer between electrodes in a conven-

tional magnetic tunnel junction, i.e., without a spin impurity.
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APPENDIX A: EXPRESSIONS FOR CURRENTS

Equations (19)–(21) can be written in a more explicit form.

After changing summations with respect to wave vectors to

integration over energy one obtains

IC = e
2π

�

∑

αβ

∑

χχ ′

|〈Rβ,χ ′|Hint|Lα,χ〉|2
∫

dω ρL
α (ω)ρR

β (ω + �χχ ′)

×{PχfLα(ω)[1 − fRβ(ω + �χχ ′ )] − Pχ ′fRβ(ω + �χχ ′ )[1 − fLα(ω)]}, (A1)

IS =
�

2

2π

�

∑

χχ ′

{∑

α

ηα|〈Rα,χ ′|Hint|Lα,χ〉|2
[
Pχ

∫
dωρL

α (ω)ρR
α (ω + �χχ ′ )fLα(ω)[1 − fRα(ω + �χχ ′ )]

−Pχ ′

∫
dωρL

α (ω)ρR
α (ω + �χχ ′ )fRα(ω + �χχ ′ )[1 − fLα(ω)]

]
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+
∑

q

ηq |〈q ↓ ,χ ′|Hint|q ↑ ,χ〉|2
[
Pχ

∫
dωρ

q

↑(ω)ρ
q

↓(ω + �χχ ′ )fq↑(ω)[1 − fq↓(ω + �χχ ′)]

−Pχ ′

∫
dωρ

q

↑(ω)ρ
q

↓(ω + �χχ ′)fq↓(ω + �χχ ′)[1 − fq↑(ω)]

]}
, (A2)

IQ =
2π

�

∑

αβ

∑

χχ ′

|〈Rβ,χ ′|Hint|Lα,χ〉|2
∫

dωρL
α (ω)ρR

β (ω + �χχ ′ )

×
{
Pχ

(
ω +

1

2
�χχ ′ − µ0 −

1

2
(ηα − ηβ)eδVS

)
fLα(ω)[1 − fRβ(ω + �χχ ′ )]

− Pχ ′

(
ω +

1

2
�χχ ′ − µ0 −

1

2
(ηα − ηβ)eδVS

)
fRβ (ω + �χχ ′)[1 − fLα(ω)]

}

−
2π

�

∑

q

∑

αβ

∑

χχ ′

ηqPχ |〈qβ,χ ′|Hint|qα,χ〉|2
∫

dωρq
α (ω)ρ

q

β (ω + �χχ ′ )

×
(

1

2
�χχ ′ +

1

4
ηq(ηα − ηβ)eδVS

)
fqα(ω)[1 − fqβ(ω + �χχ ′ )]. (A3)

APPENDIX B: DERIVATION OF THE

KINETIC COEFFICIENTS

In order to derive the linear-response expressions for the

charge (IC ≡ I0), spin (IS ≡ I1) and heat (IQ ≡ I2) currents,

one has to linearize them with respect to the voltage bias δV ,

spin bias δVS, as well as temperature difference δT ,

In ≈
∂In

∂δV

∣∣∣∣
eq

δV +
∂In

∂δVS

∣∣∣∣
eq

δVS +
∂In

∂δT

∣∣∣∣
eq

δT , (B1)

for n = 0,1,2, where the subscript “eq” means equilibrium

situation, i.e., δV = δVS = δT = 0. According to Eq. (27)

the formulas for the charge, spin, and heat currents can be

expressed in terms of the kinetic coefficients Lnk as

In = eδn0

(
�

2

)δn1
[
eLn0x0 + eLn1x1 +

1

T
Ln2x2

]
. (B2)

In the equation above, the shorthand notation x0 ≡
δV , x1 ≡ δVS, and x2 ≡ δT has been introduced.

From Eq. (B1), it becomes clear that in order to derive the

kinetic coefficients one has to calculate the relevant derivatives

of Eqs. (19)–(21) [or essentially its integral versions given

by Eqs. (A1)–(A3)], which in general is a nontrivial task

since it requires the knowledge of the explicit form of the

probabilities Pχ . Since we are interested in the linear-response

regime and elastic contributions to transport processes, we

take into account only degenerate ground states if their energy

separation from excited states is significantly larger than the

thermal energy. For an isotropic spin impurity of arbitrary spin

number S, the analytical solution can be then found without

any further approximations regarding the impurity spectrum

(see Appendix B1). On the other hand, for an anisotropic

half-integer spin impurity (S > 1/2) exhibiting magnetic

anisotropy, the problem can be significantly simplified for

sufficiently low temperatures, T ≪ (2S − 1)D, by truncating

the impurity spectrum to the ground-state Kramers’ doublet,

so that only transitions within the doublet |χS〉 and |χ−S〉 can

occur (see subsection 2 of this Appendix). One can find the

kinetic coefficients to have the general form

Lnk =
2π

�
K2

∑

χχ ′

[
T δk2

eδk0+δk1

( ∑

σσ ′

(ησ δσσ ′)δn1W
χχ ′

σσ ′

∫
dω ρL

σ (ω)ρR
σ ′(ω)

{(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
f (ω)[1 − f (ω)]

+Pχ

∣∣∣∣
eq

∂

∂xk

(fLσ (ω)[1 − fRσ ′(ω)])
∣∣
eq

− Pχ ′
∣∣
eq

∂

∂xk

([1 − fLσ (ω)]fRσ ′(ω))
∣∣
eq

}

+ δn1

∑

q

ηq

(
αqq

ex

)2|S+
χ ′χ |2

∫
dω ρ

q

↑(ω)ρ
q

↓(ω)

{(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
f (ω)[1 − f (ω)]

+Pχ

∣∣∣∣
eq

∂

∂xk

(fq↑(ω)[1 − fq↓(ω)])|eq − Pχ ′
∣∣
eq

∂

∂xk

([1 − fq↑(ω)]fq↓(ω))|eq

})

− δn2δk1

1

2

∑

q

∑

σ

(
αqq

ex

)2
(δσ↑|S+

χ ′χ |2 − δσ↓|S−
χ ′χ |2)Pχ

∣∣
eq

∫
dω ρq

σ (ω)ρ
q

σ (ω)f (ω)[1 − f (ω)]

]
, (B3)
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where the summation for the isotropic case is over all spin states, while for the anisotropic case it is over the two degenerate

states of lowest energy, and

W
χχ ′

σσ ′ = δσ ′σ δχ ′χ

[
α2

d + 2ησαdα
LR
ex S

z
χχ

]
+

(
αLR

ex

)2{
δσ ′σ

∣∣Sz
χ ′χ

∣∣2+δσ ′σ [δσ↓|S−
χ ′χ |2+δσ↑|S+

χ ′χ |2]
}
. (B4)

To show that Eq. (B3) indeed represents the kinetic coefficient, one should additionally prove that it satisfies the Onsager relation.

For this purpose, let us begin with calculating the derivatives involving the Fermi-Dirac distribution functions of electrodes,

∂

∂xk

(fqσ (ω)[1 − fq ′σ ′(ω)])
∣∣
eq

=
∂fqσ (ω)

∂xk

∣∣∣∣
eq

−
(

∂fqσ (ω)

∂xk

∣∣∣∣
eq

+
∂fq ′σ ′(ω)

∂xk

∣∣∣∣
eq

)
f (ω), (B5)

where we used that fqσ (ω)
∣∣
eq

≡ f (ω) = {1 + exp[(ω − µ0)T −1]}−1, and

∂fqσ (ω)

∂xk

∣∣∣∣
eq

= ηqη
δk1

σ

eδk0+δk1

2T δk2
(ω − µ0)δk2 [−f ′(ω)], (B6)

with f ′(ω) ≡ ∂f (ω)/∂ω. Next, we define an auxiliary function

φ
(n,k)qq ′

σσ ′ =
∫

dωρq
σ (ω)ρ

q ′

σ ′ (ω)(ω − µ0)n[−f ′(ω)][f (ω)]k, (B7)

obeying the symmetry relation φ
(n,k)qq ′

σσ ′ = φ
(n,k)q ′q
σ ′σ , and we employ the identity f (ω)[1 − f (ω)] = T [−f ′(ω)], which in

consequence allows for writing

Lnk =
π

�
K2

∑

χχ ′

[∑

σσ ′

(ησ δσσ ′)δn1W
χχ ′

σσ ′

{(
ηδk1

σ Pχ

∣∣
eq

+ η
δk1

σ ′ Pχ ′
∣∣
eq

)
φ

(δn2+δk2,0)LR
σσ ′ +

2T 1+δk2

eδk0+δk1

(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
φ

(δn2,0)LR
σσ ′

}

+ δn1

∑

q

ηq

(
αqq

ex

)2|S+
χ ′χ |2

{
ηq(Pχ |eq − (−1)δk1Pχ ′ |eq)φ

(δk2,0)qq

↑↓ +
2T 1+δk2

eδk0+δk1

(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
φ

(0,0)qq

↑↓

}

− δn2δk1T
∑

q

∑

σ

(
αqq

ex

)2
(δσ↑|S+

χ ′χ |2 − δσ↓|S−
χ ′χ |2)Pχ

∣∣
eq

φ
(0,0)qq

σσ

]
. (B8)

We point out that the equations above have been simplified

by noting that Pχ |eq − Pχ ′ |eq = 0 (i.e., at equilibrium) for

any pair of degenerate states |χ〉 and |χ ′〉 [for details see the

discussion below].

In the next step we have to find the linear coefficients

of the Taylor expansion for the probabilities with respect

to voltage and spin bias, as well as to temperature differ-

ence. We discuss the derivation procedure separately for the

case of an isotropic spin impurity (Appendix B 1) and an

anisotropic spin impurity with magnetic anisotropy (Appendix

B 2), where only the Kramers’ ground doublet is taken into

consideration.

1. Isotropic spin impurity S

As described in Sec. III B, the probabilities of finding the

impurity in a specific spin state can be found by means of

the set of stationary master equations; see Eq. (24). Because

the Hamiltonian of the impurity is rotationally invariant in the

present case, one can conveniently use the eigenvalues m of

the zth component of the spin operator Sz to label the spin

states, i.e., |χ〉 ≡ |m〉, so that

∀
m
Pm−1γm−1,m + Pm+1γm+1,m − Pm(γm,m−1 + γm,m+1) = 0,

(B9)

with transition rates given by

γm,m−1 =
2π

�
K2C−

m

∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′

↓↑ (0),

γm−1,m =
2π

�
K2C−

m

∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′

↑↓ (0),

with C±
m ≡ S(S + 1) − m(m ± 1). (B10)

Using Eq. (B9) together with the probability normalization

condition
∑

m Pm = 1, one obtains

PS =
[

1 +
2S−1∑

m=0

m∏

k=0

γS−k,S−1−k

γS−1−k,S−k

]−1

and

∀
m
=S

Pm = PS

S−1−m∏

k=0

γm+1+k,m+k

γm+k,m+1+k

, (B11)

and after taking into account Eq. (B10),

Pm =
YS−m

1 +
∑2S−1

m=0 Ym+1
with

Y ≡
∑

qq ′

(
α

qq ′

ex

)2
�

(0)qq ′

↓↑ (0)
∑

qq ′

(
α

qq ′
ex

)2
�

(0)qq ′

↑↓ (0)
. (B12)
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MACIEJ MISIORNY AND JÓZEF BARNAŚ PHYSICAL REVIEW B 89, 235438 (2014)

By noting that at equilibrium the function �
(n)qq ′

σσ ′ (0), see Eq. (26), exhibits the following symmetry property:

�
(n)qq ′

σσ ′ (0)
∣∣
eq

= �
(n)q ′q
σ ′σ (0)

∣∣
eq

, (B13)

one obtains Y|eq = 1, which allows for writing the equilibrium probabilities and the corresponding derivatives in the following

form:

Pm|eq =
1

2S + 1
and

∂Pm

∂xk

∣∣∣∣
eq

= −m
∂Y

∂xk

∣∣∣∣
eq

= −m

∑
qq ′

(
α

qq ′

ex

)2[ ∂�
(0)qq′
↓↑ (0)

∂xk
|eq − ∂�

(0)qq′
↑↓ (0)

∂xk
|eq

]

∑
qq ′

(
α

qq ′
ex

)2
�

(0)qq ′

↑↓ (0)|eq

. (B14)

Finally, employing that

∂�
(0)qq ′

σσ (0)

∂xk

∣∣∣∣
eq

=
eδk0+δk1

2T δk2

[
ηqη

δk1

σ φ
(δk2,0)qq ′

σσ −
(
ηδk1

σ ηq + η
δk1

σ ηq ′
)
φ

(δk2,1)qq ′

σσ

]
, (B15)

we get the explicit expression for the difference of probabilities’ derivatives,

∂Pm

∂xk

∣∣∣∣
eq

−
∂Pm′

∂xk

∣∣∣∣
eq

=
m − m′

2S + 1
�

eδk0+δk1

T δk2

{
(δk0 + δk2)

(
αLR

ex

)2 ∑

σ

ησφ
(δk2,0)LR
σσ + δk1

∑

q

ηq

(
αqq

ex

)2
φ

(δk2,0)qq

↑↓

}
, (B16)

with

� =
[ ∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′

↑↓ (0)
∣∣
eq

]−1

. (B17)

Next, by noting that for m 
= m′ holds,

Wmm′

σσ ′ =
(
αLR

ex

)2
δσ ′σ {δσ↓δm,m′+1C

+
m′ +δσ↑δm′,m+1C

+
m}, (B18)

and
∑

m C+
m = (2/3)S(S + 1)(2S + 1), we arrive at the final formula for the kinetic coefficient:

Lnk =
π

�
K2

[
2

2S + 1

∑

mm′

∑

σσ ′

(ησ δσσ ′)δn1+δk1Wmm′

σσ ′ φ
(δn2+δk2,0)LR
σσ ′

− (δn0 + δn2)(δk0 + δk2)
4

3
S(S + 1)�T

(
αLR

ex

)4 ∑

σσ ′

ησησ ′φ
(δn2,0)LR
σσ φ

(δk2,0)LR

σ ′σ ′

− [(δn0 + δn2)δk1 + δn1(δk0 + δk2)]
4

3
S(S + 1)�T

(
αLR

ex

)2 ∑

qσ

ηqησ

(
αqq

ex

)2
φ

(δn2+δk2,0)LR
σσ φ

(0,0)qq

↑↓

− δn1δk1

{
4

3
S(S + 1)�T

∑

qq ′

ηqηq ′
(
αqq

ex

)2(
αq ′q ′

ex

)2
φ

(0,0)qq

↑↓ φ
(δk2,0)q ′q ′

↑↓ −
4

3
S(S + 1)

∑

q

(
αqq

ex

)2
φ

(0,0)qq

↑↓

}]
. (B19)

It can be easily seen that the expression above is symmetric with respect to exchanging the indices n and k, and hence it satisfies

the Onsager relation.

2. Anisotropic spin impurity S > 1/2

A similar derivation as above can be performed for the

case of an anisotropic spin impurity with both uniaxial and

transverse components of magnetic anisotropy. Provided that

only the Kramers’ doublet states |χS〉 and |χ−S〉 participate in

the transport, the general expression for the probabilities of

finding the impurity spin in either of these two states can be

easily found from Eq. (24) and the normalization condition for

probability,

PχS
=

γχ−SχS

γ
and Pχ−S

=
γχSχ−S

γ
(B20)

with γ = γχ−SχS
+ γχSχ−S

. From Eq. (25) one gets for m = ±S

γχmχ−m
=

2π

�
K2

∑

qq ′σ

(
αqq ′

ex

)2
�

(0)qq ′

σσ (0)[δσ↓|S−
χ−mχm

|2

+ δσ↑|S+
χ−mχm

|2], (B21)

and

γ =
2π

�
K2

∑

ξ=±

∣∣Sξ
χ−SχS

∣∣2
∑

qq ′σ

(
αqq ′

ex

)2
�

(0)qq ′

σσ (0). (B22)

Using the symmetry property of �
(n)qq ′

σσ ′ (0)
∣∣
eq

, see Eq. (B13), one can show that

γχSχ−S
|eq = γχ−SχS

|eq = 1
2
γ |eq and,consequently, PχS

|eq = Pχ−S
|eq = 1

2
. (B23)
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Furthermore, employing Eqs. (B20) and (B23), one finds for m = ±S

∂Pχm

∂xk

∣∣∣∣
eq

=
1

γ |eq

[
∂γχ−mχm

∂xk

∣∣∣∣
eq

−
1

2

∂γ

∂xk

∣∣∣∣
eq

]
, (B24)

from where it immediately follows that

∂Pχm

∂xk

∣∣∣∣
eq

−
∂Pχ−m

∂xk

∣∣∣∣
eq

=
1

γ
∣∣
eq

[
∂γχ−mχm

∂xk

∣∣∣∣
eq

−
∂γχmχ−m

∂xk

∣∣∣∣
eq

]
. (B25)

Using then Eq. (B15), one obtains

∂Pχm

∂xk

∣∣∣∣
eq

−
∂Pχ−m

∂xk

∣∣∣∣
eq

= −
1

2
sgnz(χm)

�−

�+
�

eδk0+δk1

T δk2

{
(δk0 + δk2)

(
αLR

ex

)2 ∑

σ

ησφ
(δk2,0)LR
σσ + δk1

∑

q

ηq

(
αqq

ex

)2
φ

(δk2,0)qq

↑↓

}
, (B26)

where sgnz(χm) ≡ sgn(Sz
χmχm

) and �± = |S+
χ−SχS

|2 ± |S−
χ−SχS

|2.

Finally, before we write the final expression for the kinetic coefficient, let us note that for a half-integer spin impurity (in the

absence of an external magnetic field) S
z
χSχ−S

= S
z
χ−SχS

= 0 and S
±
χ±Sχ±S

= 0, which allows for the following identities to be used

in Eq. (B8):

∑

χχ ′

W
χχ ′

σσ ′

(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
=

(
αLR

ex

)2
δσ ′σησ�−

(
∂PχS

∂xk

∣∣∣∣
eq

−
∂Pχ−S

∂xk

∣∣∣∣
eq

)
, (B27)

and

∑

χχ ′

|S+
χ ′χ |2

(
∂Pχ

∂xk

∣∣∣∣
eq

−
∂Pχ ′

∂xk

∣∣∣∣
eq

)
= �−

(
∂PχS

∂xk

∣∣∣∣
eq

−
∂Pχ−S

∂xk

∣∣∣∣
eq

)
. (B28)

Accordingly, the formulas for the kinetic coefficients take the general forms:

Lnk =
π

�
K2

[ ∑

χχ ′

∑

σσ ′

(ησ δσσ ′)δn1+δk1W
χχ ′

σσ ′ φ
(δn2+δk2,0)LR
σσ ′

− (δn0 + δn2)(δk0 + δk2)
�2

−
�+

�T
(
αLR

ex

)4 ∑

σσ ′

ησησ ′φ
(δn2,0)LR
σσ φ

(δk2,0)LR

σ ′σ ′

− [(δn0 + δn2)δk1 + δn1(δk0 + δk2)]
�2

−
�+

�T
(
αLR

ex

)2 ∑

qσ

ηqησ

(
αqq

ex

)2
φ

(δn2+δk2,0)LR
σσ φ

(0,0)qq

↑↓

− δn1δk1

{
�2

−
�+

�T
∑

qq ′

ηqηq ′
(
αqq

ex

)2(
αq ′q ′

ex

)2
φ

(0,0)qq

↑↓ φ
(0,0)q ′q ′

↑↓ − �+
∑

q

(
αqq

ex

)2
φ

(0,0)qq

↑↓

}]
. (B29)

As previously, it can also be easily checked that the Onsager relation holds.
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[21] M. Wierzbicki and R. Świrkowicz, Phys. Lett. A 375, 609

(2011).

[22] D. Sánchez and L. Serra, Phys. Rev. B 84, 201307 (2011).

[23] B. Muralidharan and M. Grifoni, Phys. Rev. B 85, 155423

(2012).
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