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We consider a system with general decoherence and a quadratic dynamical decoupling sequence (QDD) for

the coherence control of a qubit coupled to a bath of spins. We investigate the influence of the geometry and of

the initial conditions of the bath on the performance of the sequence. The overall performance is quantified by a

distance norm d . It is expected that d scales with τ , the total duration of the sequence, as τmin{Nx ,Nz}+1, where Nx

and Nz are the number of pulses of the outer and of the inner sequence, respectively. We show both numerically

and analytically that the state of the bath can boost the performance of QDD under certain conditions: The

scaling of QDD for a given number of pulses can be enhanced by a factor of 2 if the bath is prepared in a highly

symmetric state and if the system Hamiltonian is SU(2) invariant.
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I. INTRODUCTION

Improvements both in resonance spectroscopy and in

quantum information rely on the ability of suppressing

unwanted couplings between the system and its environment.

Uncontrolled couplings are often the origin of phase accumu-

lation and, in general, of decoherence. Therefore, a faithful

manipulation and preservation of quantum states is required.

Dynamical decoupling (DD) is an open-loop control

scheme to average out the undesired coupling between the

system (qubit) and the environment (bath) by means of

stroboscopic pulsing of the qubit. DD was developed by Viola

and Lloyd [1] from the original idea of Hahn [2].

In its original formulation the DD makes use of equidistant

π pulses to average out only a single coupling along one

spin direction, usually the z direction, (pure dephasing)—we

think, for example, of the Carr, Purcell, Maiboom, and Gill

(CPMG) sequence [3,4]. A remarkable advance is the optimal

DD discovered by Uhrig [5], whose sequence has the minimum

number of pulses for a given order of the suppression of the

decoherence. It was shown that Uhrig dynamical decoupling

(UDD) can also be used to suppress longitudinal relaxation

[6–8]. Recently, other nonequidistant sequences have been

proposed [9–11].

The most general case concerns the suppression of de-

phasing and longitudinal relaxation at the same time. A

sequence of pulses having a single level of suppression cannot

suppress general dephasing. Sequences with two sorts of

pulses have been proposed where concatenated sequences are

used, like concatenated dynamical decoupling (CDD) [12] and

concatenated Uhrig dynamical decoupling (CUDD) [8], for

example.

Recently, West et al. [13] have proposed a near optimal

scheme that suppresses arbitrary couplings to order τN (τ is

the duration of the total sequence) between the qubit and the

bath using O(N2) pulses. The sequence consists of two levels

of nested UDD, therefore the name quadratic UDD (QDD).

The validity of UDD can be extended to analytically time-
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dependent Hamiltonians [14], which is an important ingredient

for the demonstration of QDD.
Wang et al. [15] showed that the effect of QDD can be

decomposed in the effects of the inner and the outer sequences.
The concept of a mutually orthogonal operation set (MOOS)
for nested Uhrig DD was introduced: a set of control operators
on the inner level is not affected by a set of control operators
on the outer level if both sets come from a MOOS. Higher-
order protection of a MOOS can be achieved if even-order
UDD sequences on different levels are nested. Thus, the results
in Ref. [15] demonstrate the validity of QDD with an even-
order UDD sequence on the inner level. If the inner level
has an odd order, the symmetry group generated by MOOS
is broken and the scheme based on nested UDD cannot be
applied anymore. It appears that this problem has been solved
by Jiang and Imambekov [16], who have provided a proof of
the validity of nested UDD (NUDD) sequences that relies on a
mapping between NUDD and a discrete quantum walk in 2m-
dimensional space. The case of QDD corresponds to m = 1. At
last, an alternative proof of the validity of QDD and a numerical
investigation of the scaling of the errors along specific spin
directions for QDD has been presented in Ref. [17] and in
Ref. [18], respectively.

In this paper we want to draw the attention to the

effects of the state of the bath on the performance of the

sequence. The fact that the specifics of the bath can limit

the performance of a sequence is already known [19,20]. It

was tested experimentally that UDD can outperform CPMG

if the environment is characterized by a hard cutoff [9,21]

while for soft cutoffs equidistant sequences perform either

better or the same [22]. Otherwise UDD seems to perform

very well for electron spins in irradiated malonic acid crystals

[21] as well as for applications of magnetic resonance

imaging [23].

So far we have always viewed the environment as an

unavoidable restraint on the prolongation of the coherence

of a spin (qubit). Hence, one has to eliminate or at least to

reduce the coupling between environment and system because

the coupling between environment and system transfers

disorder from the environment to the system. But does the

environment’s disorder always act against coherence in the

system?

042336-11050-2947/2011/84(4)/042336(8) ©2011 American Physical Society



S. PASINI AND G. S. UHRIG PHYSICAL REVIEW A 84, 042336 (2011)

TABLE I. Scaling of QDD with the duration of the sequence τ

classified according to the degree of symmetry of the Hamiltonian

and of the initial state of the bath. The notation Nmin refers to the

minimum number of pulses of the inner and the outer sequence.

ρB \ H Low High

Low τNmin+1 τNmin+1

High τ χ τ 2(Nmin+1)

Here we show that the performance of a given sequence can

be enhanced if the system Hamiltonian H is SU(2) invariant

and if the initial state of the bath (i.e., its density matrix ρB)

is completely disordered: ρB ∝ 1. We call such a state an

infinite-temperature state. We simulate the effect of a QDD

sequence on a bath of spins both for a completely anisotropic as

well as for an isotropic central Heisenberg spin model. For both

cases we analyze the scaling of QDD when the bath is prepared

either in a product state or in an infinite-temperature state. Four

cases are studied as summarized in Table I. The cases where

the bath state is characterized by a low degree of symmetry,

independent of the degree of symmetry of H , provide the

lower bounds for the scaling of QDD: For short times, QDD

scales always as τNmin+1, where Nmin is the smallest number of

pulses, either of the inner or of the outer sequence [17,18]. In

the off-diagonal case in Table I, where H is of low symmetry

and the bath state of high symmetry, the scaling exponent χ

depends on the number of pulses. Otherwise, the scaling of

QDD is enhanced to the power τ 2(Nmin+1) if H and ρB are

highly symmetric.

The paper is set up as follows: in Sec. II and in the Sec. III

the numerical results for the low- and high-symmetry cases are

presented. In Sec. IV we provide the analytical argument for

the appearance of the factor 2 in the high-symmetry case. In

Sec. V we study the off-diagonal cases with mixed symmetry.

At last we draw our conclusions in Sec. VI.

II. CASE 1: LOW SYMMETRY

We start from the case where both the system Hamiltonian

as well as the initial state of the bath have a low degree

of symmetry. We consider a central spin model [24–28]

characterized by a completely anisotropic Hamiltonian of the

form

H = HB + HqB (1a)

=

M
∑

i=1

M
∑

j>i

�σ (i)Ĵ
ij

0 �σ (j ) +

M
∑

i=1

�σ (0)Ĵ i
1 �σ (i), (1b)

where all nine entries of the 3 × 3
ˆ

J
ij

0 and Ĵ i
1 matrices are

random numbers drawn from the interval [−1,1] (see Fig. 1).

The system does not show any symmetry. The entries for the

matrices
ˆ

J
ij

0 and Ĵ i
1 are fixed randomly at the beginning of

the simulation and they remain the same for all the numerical

results we present in this article. The spin labeled with zero

represents the qubit while M defines the number of spins in the

bath. The scaling appears to be essentially independent [29]

of M; we considered for our simulation M = 8. Calculations

FIG. 1. (Color online) Central spin model described by Eq. (1)

with M = 4. The solid lines represent the coupling between the

central spin (qubit) and the spins of the bath, while the dashed lines

represent the couplings between the spins of the bath.

for M = 3 yield the same results as far as the exponents are

concerned.

The QDD sequence is made of an outer sequence of π

pulses about σx and of an inner sequence of π pulses about

σz. The number of pulses for each sequence is Nx and Nz,

respectively, and the total number of pulses of the sequence is

Nx + Nz + NxNz. The switching instants are given by

txj = τ sin2

[
jπ

2(Nx + 1)

]

, (2a)

tzk,j = txj + (txj+1 − txj ) sin2

[
kπ

2(Nz + 1)

]

, (2b)

for j = {1, . . . ,Nx} and k = {1, . . . ,Nz}. We use the notation

txNx+1 = τ .

We start with an initial density matrix of the total system of

the form

ρ
(γ )

0 = |γ 〉〈γ | ⊗ ρB, (3)

with γ = {x,y,z}. The first factor in the tensor product refers

to the Hilbert space of the qubit, the second to the Hilbert space

of the bath. Furthermore, we introduce the notation

ρ
(γ )

0 := ρ
(γ )

S ⊗ ρB. (4)

For the low-symmetry case we assume that the bath is initially

in a pure product state:

|ψB〉 =

M
⊗

i=1

|γi〉, (5)

so that ρB = |ψB〉〈ψB|. For the high-symmetry case we choose

ρB = 1B/D, (6)

where D is the dimension of the Hilbert space of the bath so

that TrBρB = 1.
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The overall performance of the sequence is given by the

norm distance [30]:

d2 :=
1

3

∑

γ∈{x,y,z}

d2
γ , (7a)

d2
γ := Trq[	(γ )(τ )]2, (7b)

with

	(γ )(τ ) := TrB

[

UBP̂ ρ
(γ )

0 P̂ †U
†
B − U (τ,0)ρ

(γ )

0 U (τ,0)†
]

. (8)

The norm distance measures the distance of the real evolution

to the ideal one. The operator P̂ is defined by

P̂ := σNz

z σxσ
Nz

z σx · · · σNz

z
︸ ︷︷ ︸

Nx+1

. (9)

It incorporates the effects of the pulses. The operator U (τ,0)

represents the evolution operator of the system (1):

U (τ,0) = T {e−i
∫ τ

0
H (t)dt }, (10)

where T stands for the time-ordering and

UB := 1 ⊗ e−iτHB (11)

is the dynamics of the isolated bath. During the application of

the sequence, the sign in front of the coupling terms between

the qubit and the bath perpendicular to the pulse direction

changes every time a π pulse is applied because σiσj = −σjσi

for i �= j . Thus, in the toggling frame, the system Hamiltonian

(1) can be written as a time-dependent Hamiltonian

H (t) = HB +

M
∑

i=1

3
∑

j,k=1

fj (t) σ
(0)
j

(

J i
1

)

jk
σ

(i)
k , (12)

where the switching functions fj (t) are a piecewise constant

functions with values ±1. By σ
(i)
k we refer to the k component

of the vector �σ (i). Analogously, we refer by (J i
1)jk to the (j,k)

element of the matrix Ĵ i
1 .

Our simulations show that, for Nx �= 0, Nz �= 0, and

for Nx = Nz = N → d ∝ τN+1 + O(τN+2), (13a)

for Nx > Nz → d ∝ τNz+1 + O(τNz+2), (13b)

for Nx < Nz → d ∝ τNx+1 + O(τNx+2), (13c)

as shown in Table II and in Fig. 2(a). The data agree with the

results of Ref. [18] for the overall error. For either Nx = 0

or Nz = 0 (UDD sequence) we find that d scales as τ , as

expected for a Hamiltonian with general decoherence. On the

other hand, if Nz = 0 for example and HqB is a pure dephasing

Hamiltonian (i.e., no couplings with σ (0)
x or with σ (0)

y occur in

the Hamiltonian), the norm distance scales as dUDD ∝ τNx+1.

Here we present the results of a given random configuration

of the entries of Ĵ
ij

0 and Ĵ i
1 . We also checked that the scaling

is the same for other random configurations.

Different choices of the initial bath state ρB of the form (5)

(i.e., varying the |γi〉) can affect the scaling of dx , dy , and dz, but

not the overall scaling of d: If dγ ∝ τAγ then the leading order

of the norm distance scales as d ∝ τminγ {Aγ }. Hence the scaling

exponent reads ζ = minγ {Aγ }. This is what the analytic

arguments require for QDD [15–17]. Hence the analytic

bounds on the exponents are sharp for the low-symmetry case.

TABLE II. Low-symmetry case: Scaling exponent ζ of the norm

distance d(τ ) with τ , the total duration of the sequence. The reported

numbers are determined from the slope of the curve d vs τ in a double

logarithmic plot.

Nz \ Nx 0 1 2 3 4 5 6

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 2.01 2.00 2.01 2.01 2.01 2.00

2 1.00 2.01 2.97 3.01 3.01 3.01 3.02

3 1.00 2.00 2.99 4.01 4.07 4.09 4.09

4 1.00 2.00 3.00 4.01 4.99 4.98 5.05

5 1.00 1.95 3.02 3.95 5.01 5.98 6.05

6 1.00 1.98 3.01 3.94 5.00 5.84 6.95

III. CASE 2: HIGH SYMMETRY

We consider an SU(2) invariant isotropic central spin model

with Heisenberg couplings. We choose a Hamiltonian of the

form of Eq. (1) with Ĵ
ij

0 = αλj
ij

0 1 and Ĵ i
1 = λj i

11, where α

and λ are two generic constants while j
ij

0 and j i
1 are random

numbers between −1 and 1.

If the bath at t = 0 is described by the following density

matrix:

ρB ∝ 1B, (14)

the suppression of the decoherence is enhanced by a factor 2.

The simulation for QDD yields the scaling exponents reported

in Table III. We deduce the following rules: for Nx �= 0, Nz �= 0

and

Nx = Nz = N → d ∝ τ 2(N+1) + O(τ 2N+3), (15a)

Nx > Nz → d ∝ τ 2(Nz+1) + O(τ 2Nz+3), (15b)

Nx < Nz → d ∝ τ 2(Nx+1) + O(τ 2Nx+3). (15c)

0

2

4

6

Nz
0

2

4

6

Nx

2
4
6

0

2

4

6

Nz
0

2

4

6

Nx

4
8

12

(a)

(b)

FIG. 2. (Color online) The data of Tables II and III are graphically

represented in panel (a) and in panel (b), respectively. The numbers

are rounded to their first digit. Here we have introduced the notation

d ∝ τ ζ , where ζ stands for the scaling exponents.
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TABLE III. High-symmetry case: Scaling exponent ζ of the norm

distance with τ for an isotropic Hamiltonian with general decoherence

and for an initial density matrix such as in Eq. (14). The scaling

exponents are derived from a fit of the numerical curves for d vs τ in

a double logarithmic plot.

Nz \ Nx 0 1 2 3 4 5 6

0 1.99 2.00 2.00 2.00 2.00 2.00 2.00

1 2.00 3.99 3.95 4.00 3.98 4.00 4.00

2 2.00 4.00 5.99 6.13 6.00 5.99 5.99

3 2.00 3.99 5.99 7.98 7.97 8.01 8.01

4 2.00 4.00 5.99 7.99 9.97 9.92 9.94

5 2.00 4.00 5.99 7.99 9.97 11.93 11.94

6 2.00 4.00 6.00 7.97 9.95 12.01 13.95

If Nx = 0 or Nz = 0 the norm distance scales as τ 2. A

graphical representation of the data is provided in Fig. 2(b).

The state of Eq. (14) is a completely disordered state where

no particular spin direction or state is singled out. Such a

state can be referred to as an “infinite-temperature” state. This

is not unusual in NMR experiments where already at room

temperature one finds h̄ωL/(kBT ) ≈ 10−5, where ωL is the

Larmor frequency of a spin and kB is the Boltzmann constant.

This means that the thermal energy exceeds all internal energy

scales by many orders of magnitude.

Note that for ρB ∝ 1B the norm distance (7) coincides with

the partial Frobenius norm distance [29,30].

IV. SU(2) INVARIANCE

The appearance of the factor 2 can be explained in terms

of the different parity of HB and HqB under spin rotations. We

write the Hamiltonian (1) in the form

H = 1S ⊗ A0 +
∑

µ∈{x,y,z}

σµ ⊗ Aµ. (16)

In Eq. (16) the operators A0 and Aµ act only on the bath while

1S and σµ act only on the qubit. Since the identity operator

and the Pauli matrices form a complete basis for all system

operators the evolution operator can be expanded according to

U (τ,0) = 1S ⊗ B0(τ ) +
∑

µ=x,y,z

σµ ⊗ Bµ(τ ), (17)

where B0(τ ) and Bµ(τ ) are nontrivial functions of the operators

A0 and Aµ and of the switching functions fµ(t), see Eq. (A2)

in the appendix and Ref. [31]. For the sake of simplicity we

will omit the time dependence of the operators B0 and Bµ from

now on. From the unitarity of U (τ,0) we conclude

1B = B0B
†
0 +

∑

µ∈{x,y,z}

BµB†
µ (18a)

and

0 = i
∑

µ,ν∈{x,y,z}

ǫµνκBµB†
ν + (B0B

†
κ + H.c.) (18b)

for fixed κ ∈ {x,y,z} and with ǫµνκ being the Levi-Civita sym-

bol. In (18b) we omitted the nonsingular factor proportional to

Pauli matrices because the vanishing must be ensured by the

bath operators. In the Heisenberg picture the density matrix

ρ
(γ )

0 (3) evolves according to

ρ
(γ )

0 (τ ) = U (τ,0)ρ
(γ )

0 U (τ,0)† (19)

= U (τ,0)(ρ
(γ )

S ⊗ ρB)U (τ,0)†. (20)

We trace out the bath and use the unitarity of U (τ,0) (18) to

obtain

TrB ρ
(γ )

0 (τ ) = T
(γ )

1 + T
(γ )

2 + T
(γ )

3 + T
(γ )

4 , (21)

with

T
(γ )

1 := ρ
(γ )

S TrBρB +
∑

µ∈{x,y,z}

(

c(γ )
µ,µ − ρ

(γ )

S

)

bµ,µ, (22a)

T
(γ )

2 :=
∑

µ,ν∈{x,y,z},µ �=ν

c(γ )
µ,ν bµ,ν, (22b)

T
(γ )

3 :=
∑

µ∈{x,y,z}

d (γ )
µ bµ, (22c)

T
(γ )

4 := −i
∑

µ,ν,κ∈{x,y,z}

ǫµνκ ρ
(γ )

S σκ bν,µ. (22d)

The coefficients

bµ,ν := TrB[BµρBB†
ν ], (23a)

bµ := TrB[B0ρBB†
µ], (23b)

depend only on the bath operators while c
(γ )
µ,ν := σµρ

(γ )

S σν and

d
(γ )
µ := σµρ

(γ )

S − ρ
(γ )

S σµ are functions of the qubit operators

only. Note that, for a pure dephasing model [31], the terms

T
(γ )

2 and T
(γ )

4 do not appear.

We consider a global operator P̂ν that rotates all the spins of

our system around the ν = x, y, or z axis by the angle π . Here

we are interested in the SU(2)-invariant Hamiltonian such as

the one discussed in Sec. III. Then we have

P̂νB0P̂
†
ν = B0, P̂νBνP̂

†
ν = Bν, (24a)

P̂νBµP̂ †
ν = −Bµ for ν �= µ (24b)

and, therefore,

bµ = TrB[B0ρBB†
µ] (25a)

= TrB[P̂νB0P̂
†
ν P̂νρBP̂ †

ν P̂νB
†
µP̂ †

ν ] (25b)

= −TrB[B0 P̂νρBP̂ †
ν B†

µ] (25c)

for µ �= ν. Thus, if ρB is invariant under rotation P̂ν , which is

the case for ρB ∝ 1B, we can conclude from (25c) that bµ = 0

for µ ∈ {x,y,z}. In fact, the analogous argument also implies

bµ,ν = 0 for µ �= ν, although we will not use this fact here.

The condition µ �= ν is needed to ensure that we can flip the

sign of the two factors Bµ and B†
ν separately.

If the coefficients bµ vanish only the terms proportional to

bµ,ν remain in Eq. (21). We know from the analytic properties

of the QDD sequence that the operators Bµ with µ ∈ {x,y,z}
all scale at least with τNmin+1 where Nmin := min(Nx,Nz)

[15–17], which is supported by numerical results in Ref. [18]

and in the present work. Hence the coefficients bµ scale with

τNmin+1 and the coefficients bµ,ν with τ 2Nmin+2. Hence, the

vanishing of the bµ terms in Eq. (21) automatically reduce

042336-4
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TABLE IV. Mixed cases: In Table IV(a) (left) the Hamiltonian is SU(2) invariant while the bath is initially prepared in a product state. In

Table IV(b) (right) the Hamiltonian is asymmetric of the form in Eq. (1), the entries of Ĵ
ij

0 and Ĵ i
1 are all randomly chosen, and ρB ∝ 1B.

Nz \ Nx 0 1 2 3 4 5 6 Nz \ Nx 0 1 2 3 4 5 6

0 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0 1.98 2.00 2.00 2.00 2.00 2.00 2.00

1 1.00 2.00 2.00 2.00 2.00 2.00 2.00 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00

2 1.00 1.99 3.01 3.00 3.00 3.00 3.00 2 2.00 3.99 6.00 5.75 5.99 5.99 5.99

3 1.00 2.00 3.00 4.00 4.00 4.00 4.00 3 2.00 4.00 5.80 4.00 4.00 4.00 4.00

4 1.00 2.01 3.00 4.02 5.00 5.00 5.01 4 2.00 4.00 6.00 7.96 9.96 10.27 10.30

5 1.00 2.00 3.00 4.00 5.02 6.00 6.00 5 2.00 3.97 5.97 7.97 9.85 6.00 6.00

6 1.00 2.00 3.00 3.98 5.00 6.00 6.99 6 2.00 4.00 5.99 7.99 9.95 11.93 13.92

the decoherence by doubling the exponent in the scaling d ∝
τNmin+1 → τ 2Nmin+2 with the total duration τ of the sequence.

Note that, for a model of pure dephasing [e.g., only σ (0)
z

appears in (1b)], we do not need the symmetry with respect to

two operators P̂µ. It is sufficient to have either P̂x or P̂y which

invert σz so that we can conclude that bz vanishes in order to

know that the scaling exponent doubles. This was already seen

in the numerical data presented and analyzed in Ref. [29].

V. CASE 3: MIXED SYMMETRY

Here we analyze the off-diagonal cases of Table I. They are

characterized either by an SU(2)-invariant Hamiltonian and a

low-symmetry bath state or by a low-symmetry Hamiltonian

with a high-symmetry initial bath state ∝ 1B. Because the

Hamiltonian and the density matrix have a different degree of

symmetry the analytical argument of Eq. (25a) for bµ does not

hold anymore.

The numerically found scaling exponents are reported in

Tables IV and depicted in Fig. 3. The coupling constants

used to derive the scaling exponents of this table are the

same as those used for the simulation of the SU(2)-invariant

Hamiltonian or the ones used for the asymmetric Hamiltonians

used in Secs. II and III.

If the Hamiltonian is SU(2) symmetric and the bath is

initially prepared in a product state the scaling exponents

look the same as those of Table II. If the Hamiltonian is

asymmetric and ρB ∝ 1B we find for Nx = Nz = N that the

scaling exponent is N + 1 for N odd and 2(N + 1) for N

even. For Nx > Nz the exponent is either Nz + 1 if Nz is odd

or 2(Nz + 1) if Nz is even while for Nx < Nz we find that d

0

2

4

6

Nz
0

2

4

6

Nx

4
8

12

FIG. 3. (Color online) The data of Table IV(b) is graphically

represented. The numbers are rounded to their first digit. The notation

ζ refers to the scaling exponents of the norm distance d ∝ τ ζ .

scales as 2(Nx + 1). We cannot provide any explanations for

this alternating behavior of the scaling exponents and for the

reason why, for Nx > Nz, it depends only on the number of

pulses of the inner sequence. This is still an open question for

future investigation.

Furthermore, it is worth mentioning that peculiar choices

of the couplings imply nongeneric behavior. If the couplings

j i
1 is the same for all i the QDD sequence behaves like a UDD

sequence with Nz pulses for Nx odd, as if the qubit were subject

only to pure dephasing: Either Ax �= 0 or Ay �= 0 in Eq. (16).

It is not clear why the QDD behaves like a UDD sequence in

this case. A possible explanation is that the product state we

take as initial state of the bath is not the most general one.

It is not entangled. In the appendix we analyze the first three

cumulants of the evolution operator for the case Nx = 1. We

find that they contain only one qubit operator, either σx or σy ,

and that the dephasing term proportional to σz is always zero.

For Nx even we recover the results of Table II.

VI. CONCLUSIONS

We investigated the influence of the state of the bath

in suppressing general decoherence by means of a QDD

sequence. The performance of the sequence is measured by

the norm distance d which is essentially the norm of the

remaining decoherence. Thus the performance is quantified

by the scaling of d with τ , the total duration of the sequence.

Recent papers [15–18] proved the properties of QDD and

clarified the dependence of the scaling on the number of

pulses Nx and Nz: The overall scaling of QDD is given

by ζ := min{Nx,Nz} + 1 independent of the details of the

environment (i.e., d ∝ τ ζ ). In this sense QDD is a universal

sequence for general decoherence such as UDD is a universal

sequence for pure dephasing.

In the present work, we have shown that the actual perfor-

mance of QDD can be even better than expected on the basis of

the general mathematical arguments. This improvement occurs

if the Hamiltonian and the bath state are highly symmetric; for

instance, if the Hamiltonian is spin isotropic and the bath is

prepared initially in a completely disordered state. Then we

found both numerically and analytically that the exponent of

the scaling with τ acquires an additional factor of 2: d ∝ τ 2ζ .

The same was already observed for the UDD sequence applied

to pure dephasing in Ref. [29].

We emphasize that this result is by no means at odds with

the proofs of universality [15–17]. The general proofs refer
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to the worst case for decoherence. They determine whether

a certain operator (Pauli matrix) for the qubit occurs or not

irrespective of the bath operator with which it is multiplied.

The underlying idea is that, for any nonvanishing bath operator

there is a bath state such that the qubit state is influenced in a

nontrivial way. Hence decoherence occurs.

But for certain choices of the bath state even a nonvanishing

bath operator may have a vanishing effect on the quantum

bit if its partial bath trace vanishes. Then no decoherence

is induced by this particular term. This is the effect which

enhances the performance of the QDD sequence for highly

symmetric situations. We summarize that min{Nx,Nz} + 1 is

a lower bound for ζ .

We stress that the phenomenon found is relevant for

realistic situations. Complete or partial spin symmetry in the

Hamiltonian is a standard feature. A completely disordered

bath state is also an excellent starting point in the description

of baths of nuclear spins. Their mutual interaction is so small

in energy that even room temperature suffices to disorder the

nuclear spins completely.

In general, we conclude that the more asymmetric are the

bath Hamiltonian, its coupling to the qubit, and in particular

its initial state, the lower the exponent ζ is of the leading

nonvanishing power in the total duration τ of the sequence

inducing decoherence. The same is true of UDD sequences

for pure dephasing. So far, we focused on spin baths which

allow for completely disordered, infinite temperature states. It

is an interesting question for future research whether a similar

phenomenon can occur in other baths such as bosonic ones.

Experimental research is also called for. To our knowledge,

there exist studies on the influence of the initial state, see for

instance Ref. [32], but they focus on the initial state of the

system. Discussions of the influence of the initial state of the

bath, which was our focus here, are scarce [33]. Moreover,

it must be distinguished between studies of iterated cycles of

sequences with exponential decay rates [22] and studies of

a single sequence displaying decoherence with a particular

power law [5–7,13,15–17,28].

Of course, it is difficult to measure the exponents directly.

But we suggest to demonstrate experimentally that the per-

formance of a QDD or a UDD sequence is lowered if the

symmetry of either the Hamiltonian or of the initial bath state

is lowered. This would already be smoking-gun evidence for

the essence of the present theoretical finding.
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APPENDIX: MAGNUS EXPANSION OF EVOLUTION

OPERATOR

In general, it is complicated to find a universal argument

that explains the scaling of QDD if the symmetry of the system

is not well defined. The reason why some exponents deviate

from the analytically predicted value depends on the possible

vanishing of some terms in the Magnus expansion [34,35]

of the evolution operator. The form of such terms strongly

depends on the form of the Hamiltonian and of the symmetry

of the bath state.

If no general conclusions can be drawn on the parity of

these terms and of the density matrix under a rotation P̂µ, one

way to proceed is to calculate the cumulants of the expansion

explicitly and to analyze which terms determine the power

law of d with τ . Here we provide an analysis of the first

cumulants of the Magnus expansion for Nx odd for the data of

Table IV(a).

For a generic instant t ∈ [0,τ ] we write the Hamiltonian (1)

as

H (t) = HB +
∑

µ=x,y,z

σµfµ(t)Aµ. (A1)

The switching functions1fµ(t) are the effect of the strobo-

scopic pulsing of the qubit. They are piecewise constant

functions with values ±1:

fz(t) = (−1)j for t ∈
(

txj ,txj+1

]

, (A2a)

fy(t) = (−1)k for t ∈
(

tzj,k,t
x
j+1,k

]

, (A2b)

with fy(0) = 1 and fy(τ ) = −1, and

fx(t) = fz(t)fy(t). (A2c)

The evolution operator can be written in terms of the

cumulants H̄ (n) as

U (τ,0) = exp

{

− iτ

∞
∑

n=1

H̄ (n)

}

, (A3)

with τH̄ (n) ∝ τ n. The first and the second cumulants

are defined [34] as τH̄ (1) =
∫ τ

0
H (t)dt and τH̄ (2) =

− i
2τ

∫ τ

0
dt1

∫ t1
0

dt2[H (t1),H (t2)]. From Eqs. (A2) it is straight-

forward to verify that
∫ τ

0
dtfµ(t) = 0 for µ = x, y, or z and for

Nz = Nx = 1. The first cumulant is proportional to the bath

Hamiltonian

τH̄ (1) = τHB. (A4)

For the second cumulant one finds

2iτ H̄ (2) =
∑

µ=x,y,z

σµI
µ

2 [HB,Aµ] (A5)

+
∑

µ,ν=x,y,z

I
µ,ν

2 [σµAµ,σνAν], (A6)

with the integrals

I
µ

2 :=

∫ τ

0

dt1

∫ t1

0

dt2(fµ(t2) − fµ(t1)) (A7a)

and

I
µ,ν

2 :=

∫ τ

0

dt1

∫ t1

0

dt2fµ(t2)fν(t1). (A7b)

1The form of the switching function can be easily understood if

one remembers that an X π pulse changes signs in front of Y and

Z coupling, while a Z π pulse changes signs in front of X and Y

coupling.
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The integrals (A7a) and (A7b) can be easily evaluated;

we report below only those that are different from zero. For

Nz = Nx = 1 one finds

I
y

2 =
τ 2

4
, I z

2 =
τ 2

2
, I

x,z
2 = −I

z,x
2 = −

τ 2

4
. (A8)

The second cumulant then becomes

2iτ H̄ (2) =
τ 2

4
σy[HB,Ay] +

τ 2

2
σz[HB,Az]

+i
τ 2

2
σy[Ax,Az]+, (A9)

where the notation [ ]+ stands for an anticommutator. It is

interesting to notice that H̄ (2) does not contain any terms

proportional to σx .

If the Hamiltonian is SU(2) invariant and the coupling

constants Ĵ
ij

0 and Ĵ i
1 are equal and independent of the indices

i and j (Ĵ
ij

0 = αλ and Ĵ i
1 = λ), the commutators in Eq. (A9)

vanish because the Pauli matrices anticommute. This is true

for a central spin model.

On the other hand, if Aµ ≡ σ (1)
µ (e.g., for a spin chain), the

commutators in Eq. (A9) are different from zero. The an-

ticommutator becomes [Ax,Az]+ = 2i
∑

i,j (Ĵ1)xx(Ĵ1)zz(1 −

δij )σ (i)
x σ

(j )
z which implies that it vanishes for a spin chain

because the qubit is coupled to a single site only (i.e., i = j

holds).

As usual we are interested in the difference between the

evolved density matrix ρ
(γ )

0 (τ ) = U (τ,0)ρ
(γ )

0 U (τ,0)† and the

initial one. We find

TrB

{

ρ
(γ )

0 (τ ) − ρ
(γ )

0

}

=
τ 2

4

[

σy,ρ
(γ )

S

]

TrB{ρB[Ax,Az]+}

+
τ 4

16
c(γ )
yy TrB{[Ax,Az]+ρB[Ax,Az]+},

(A10)

where the hermiticity A†
µ = Aµ was used. In writing Eq. (A10)

we neglected the contributions coming from the first cumulant

because they do not alter the qubit-operator content of the

norm distance.

If ρB ∝ 1B the terms with the trace over the bath vanish for

an SU(2)-invariant Hamiltonian (see Sec. III) while they are

finite for an asymmetric model such as the one in Eq. (1) in

Sec. II.

In order to understand why the distance norm scales with

exponents Nz + 1 for Nx = 1 (and in general for Nx odd) in

Table IV(a), some knowledge of the third cumulant H̄ (3) is

required. This cumulant is defined [34] as

−6τH̄ (3) =

∫ τ

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3{[H (t3),[H (t2),H (t1)]]

+[H (t1),[H (t2),H (t3)]]}. (A11)

The commutators [H (t2),H (t1)] and [H (t2),H (t3)] have the

same operator content as H̄ (2), but differ in their prefactors

and in their time dependence. One can verify that [HB,H̄ (2)] =
0 if the bath Hamiltonian is SU(2) invariant due to the

anticommutation of the Pauli matrices. For the same reason

one finds that
[

∑

µ

σµAµ,H̄ (2)

]

∝
∑

µ,ν

ǫµ,y,ν σν ⊗ σ (i)
x σ (j )

y σ (k)
µ , (A12)

where i �= j �= k. Equation (A12) only provides the opera-

tor contents of Eq. (A11). In order to eliminate the time

dependence one must substitute Eq. (A12) into Eq. (A11)

and integrate over t1, t2, and t3. Each operator Aµ brings a

switching function fµ(t) with it, such that the integration in

(A11) yields the coefficients

I
α,β,γ

3 =

∫ τ

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3fα(t1)fβ(t2)fγ (t3). (A13)

The indeces α, β, and γ can be equal to x, y, and z. We

have checked numerically that for Nx = 1 and Nz = 2 the

only nonzero contributions are given by I
x,z,z
3 , I

z,x,z
3 , and I

z,z,x
3

corresponding to the qubit operator σx . Thus the third cumulant

H̄ (3) is a term of pure dephasing that can be suppressed by

means of a Z sequence of π pulses. From the numerical results

we expect that the same argument holds in general for higher

cumulants and for Nx odd.

We also checked our results for a spin chain. We find the

same results as for a central spin model in the cases of low

symmetry, high symmetry, and in the case of an asymmetric

Hamiltonian with ρB ∝ 1B. Discrepancies are found for the

SU(2)-invariant Hamiltonian in combination with the product

state |ψB〉 (5). A possible explanation is provided by the

commutators in Eq. (A9) that do not vanish for a spin chain

with Aµ = σ (1)
µ . Hence the precise topology of the model

matters for the case of mixed degree of symmetry.

[1] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).

[2] E. L. Hahn, Phys. Rev. 80, 580 (1950).

[3] H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

[4] S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).

[5] G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).

[6] W. Yang and R.-B. Liu, Phys. Rev. Lett. 101, 180403 (2008).

[7] G. S. Uhrig, New J. Phys. 10, 083024 (2008).

[8] G. S. Uhrig, Phys. Rev. Lett. 102, 120502 (2009).

[9] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga,

W. M. Itano, and J. J. Bollinger, Nature (London) 458, 996

(2009).

[10] H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett. 103,

040501 (2009).
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