000201446 001__ 201446
000201446 005__ 20240625095033.0
000201446 0247_ $$2doi$$a10.1002/pssb.201350406
000201446 0247_ $$2ISSN$$a0370-1972
000201446 0247_ $$2ISSN$$a1521-3951
000201446 0247_ $$2WOS$$aWOS:000344360000011
000201446 037__ $$aFZJ-2015-03741
000201446 041__ $$aEnglish
000201446 082__ $$a530
000201446 1001_ $$0P:(DE-Juel1)131057$$aZeller, Rudolf$$b0$$eCorresponding Author$$ufzj
000201446 245__ $$aLarge scale supercell calculations for forces around substitutional defects in NiTi
000201446 260__ $$aWeinheim$$bWiley-VCH$$c2014
000201446 3367_ $$2DRIVER$$aarticle
000201446 3367_ $$2DataCite$$aOutput Types/Journal article
000201446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552576842_30277
000201446 3367_ $$2BibTeX$$aARTICLE
000201446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201446 3367_ $$00$$2EndNote$$aJournal Article
000201446 520__ $$aDensity functional calculations are used to investigate the interatomic forces that arise if Ti atoms are substituted by Ni or Cu defect atoms. For the experimentally found monoclinic B19’ ground state structure, these forces are calculated for the unrelaxed atomic positions by the Korringa–Kohn–Rostoker Green-function method. The force field in the vicinity of the defects is markedly different in 32- and 256-atom supercells while it is nearly the same in 256- and 2048-atom supercells. This difference is explained by symmetry arguments and discussed as a possible explanation for the concentration dependent transition from the high-temperature B2 phase to low temperature B19’ or strain glass phases.
000201446 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201446 536__ $$0G:(DE-Juel1)jiff02_20120501$$aQuantum description of nanoscale processes in materials science (jiff02_20120501)$$cjiff02_20120501$$fQuantum description of nanoscale processes in materials science$$x1
000201446 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201446 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.201350406$$gVol. 251, no. 10, p. 2048 - 2054$$n10$$p2048 - 2054$$tPhysica status solidi / B$$v251$$x0370-1972$$y2014
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.pdf$$yRestricted
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.gif?subformat=icon$$xicon$$yRestricted
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201446 8564_ $$uhttps://juser.fz-juelich.de/record/201446/files/pssb201350406.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201446 8767_ $$92014-10-29$$d2014-11-05$$eColour charges$$jZahlung erfolgt
000201446 909CO $$ooai:juser.fz-juelich.de:201446$$popenCost$$pOpenAPC$$pVDB
000201446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201446 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201446 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201446 9141_ $$y2015
000201446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201446 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201446 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201446 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201446 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201446 920__ $$lyes
000201446 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000201446 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000201446 9801_ $$aAPC
000201446 980__ $$ajournal
000201446 980__ $$aVDB
000201446 980__ $$aI:(DE-Juel1)IAS-3-20090406
000201446 980__ $$aI:(DE-82)080012_20140620
000201446 980__ $$aAPC
000201446 980__ $$aUNRESTRICTED
000201446 981__ $$aI:(DE-Juel1)PGI-2-20110106