TY  - JOUR
AU  - Sinmyo, Ryosuke
AU  - Bykova, Elena
AU  - McCammon, Catherine
AU  - Kupenko, Ilya
AU  - Potapkin, Vasily
AU  - Dubrovinsky, Leonid
TI  - Crystal chemistry of Fe$^{3+}$-bearing (Mg, Fe)SiO$_{3}$ perovskite: a single-crystal X-ray diffraction study
JO  - Physics and chemistry of minerals
VL  - 41
IS  - 6
SN  - 1432-2021
CY  - Berlin
PB  - Springer
M1  - FZJ-2015-03744
SP  - 409 - 417
PY  - 2014
AB  - Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where Fe3+/ΣFe∼20% based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., Mg2+−Fe2+ or Mg2+Si4+−Fe3+Al3+ substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000337035400004
DO  - DOI:10.1007/s00269-013-0639-8
UR  - https://juser.fz-juelich.de/record/201449
ER  -