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We present a phase field model for isothermal transformations of two-component alloys that includes Onsager

kinetic cross coupling between the nonconserved phase field φ and the conserved concentration field C. We

also provide the reduction of the phase field model to the corresponding macroscopic description of the free

boundary problem. The reduction is given in a general form. Additionally we use an explicit example of a phase

field model and check that the reduced macroscopic description, in the range of its applicability, is in excellent

agreement with direct phase field simulations. The relevance of the newly introduced terms to solute trapping is

also discussed.
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Introduction. Interface kinetics often plays a very important

role in phase transformations. It is responsible for the deviation

from the local thermodynamic equilibrium at the interface

between different phases. In the case of alloys, it may affect the

microstructure and the average concentration of the growing

phase. It is responsible for solute trapping and some oscillatory

instabilities of the transformation front leading eventually to

the formation of banded structures.

For example, in the case of isothermal transformations

of binary alloys the bulk of each phase is described by the

diffusion equation. The interface kinetics is more complicated

because phase transformation effects occur in this region

in addition to the diffusional exchange. In the macroscopic

phenomenological approach to this problem (see, for ex-

ample, [1] and references therein) it is assumed that the

physical interface width is much smaller than any relevant

macroscopic length scale and one formulates linear Onsager

relations at the interface which describe the interface kinetics.

These relations connect two independent fluxes JA and JB

(through the interface) of atoms A and B to two independent

driving forces δµA and δµB which are the differences in

the chemical potentials of A and B atoms at the interface

(see below). The corresponding symmetric positive-definite

Onsager matrix fully describes the interface kinetic properties

in the framework of linear nonequilibrium thermodynamics.

Of course, as in any phenomenological description, the

three independent elements of this matrix depend on the

specific physical mechanisms in the interface region. This

means that any specific thermodynamically consistent model

of the atomically rough interface (in general nonlinear)

being linearized near the equilibrium must be reducible

to this phenomenological description and the elements of

the Onsager matrix should be calculated in terms of the

model parameters. One should note that in the problem of

solidification, if the assumption of the absence of diffusion

in the solid phase is not handled with enough care, one

may come to the conclusion that Onsager symmetry is

not fulfilled [2]. However, this point has been clarified in

Ref. [1].

In recent years the phase field approach to phase trans-

formations has attracted the attention of much research (see,

for example, [3] and references therein). It was originally

introduced as a mathematical tool to solve the free boundary

problem without directly tracking the interface position. In

the case of isothermal transformations of binary alloys, this

approach introduces, in addition to the conserved concen-

tration field C, a nonconserved phase field φ. This field

changes smoothly on the scale of the interface width from

some value, say φ = 0, that corresponds to one phase to

some other value, φ = 1, which corresponds to the other

phase. The phase field equations of motion have a “diagonal”

form in the classical variational formulation (see below),

i.e., the time derivative of φ (or C) depends only on the

functional derivative of the free energy with respect to φ

(or C). This diagonal formulation therefore contains only

two independent coefficients describing the interface kinetic

properties while the general macroscopic phenomenology

allows three independent parameters. An intuitively clear way

to resolve this problem is to introduce kinetic cross coupling

(nondiagonal terms) directly into the phase field equations (see

a very recent paper [4] for a different approach). However,

as stated in [5], according to Curie’s principle [6], there

can be no kinetic coupling between the scalar nonconserved

phase field φ and vectorial diffusional fluxes of the conserved

quantities energy and/or concentration. We think that this

is an erroneous statement (see also remarks in [7]). The

presence of the interface and the existence of the vector

∇φ, which is orthogonal to the interface and operates only

in the interface region, allows us to formulate phase field

equations that include kinetic cross coupling and are in

agreement with linear nonequilibrium thermodynamics and

Curie’s principle. This issue is also relevant to the antitrapping

current introduced in some nonvariational versions of the

phase field model [8,9] for different purposes. The antitrapping

current introduces a new kinetic coefficient and uses ∇φ

as a vector normal to the interface. To use this idea for

the description of the cross effect of the interface kinetics

in phase field models, one should carefully consider the

necessary Onsager symmetry. This goal can be achieved

only in the variational formulation of the phase field

model.

The main purpose of this paper is to provide a thermo-

dynamically consistent description of the phase field model

which contains kinetic cross coupling between the phase

field φ and the concentration field C. The second goal

is to provide the reduction of this phase field model to
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the macroscopic phenomenological description as described

above. This reduction is important in order to understand which

macroscopic problem can be solved by the phase field model.

The phase field model contains explicitly the finite interface

width W as a parameter that is not included in the macroscopic

description. We know only one example of such a reduction

for classical (diagonal) phase field models which keeps W

finite (the sharp interface limit sets W = 0). The thin interface

limit was originally introduced by Karma and Rappel [10]

for the temperature field instead of the concentration field.

This approach has then been promoted by many authors,

who included the concentration field in the discussion (see,

for example, a very detailed paper by Elder et. al [11]).

However, Brener and Temkin [7] recently pointed out that

the macroscopic description derived by the thin interface limit

has a clear deficit in some range of parameters of the original

phase field model. Namely, it can create strong unphysical

instabilities due to a violation of the positive-definiteness of the

obtained Onsager matrix, while the original phase field model

is fully consistent and stable. The approach promoted in the

present paper for the reduction to the macroscopic description

is free from this deficit.

Macroscopic description of isothermal alloy transforma-

tions. We discuss the phase transformation of a two-component

alloy at a given temperature T with an interface separating

two phases. The dimensionless concentration of B atoms is

C1 in growing phase 1 and C2 in mother phase 2. In the

bulk of each phase these concentrations are described by

diffusion equations with diffusion coefficients D1 and D2.

To formulate the boundary conditions at the interface we use

the phenomenological Onsager approach. Onsager relations

connect the fluxes JA and JB (through the interface) of atoms

A and B to two driving forces δµA and δµB which are

the usual differences in the chemical potentials of A and B

atoms at the interface (see, for example, [1] and references

therein),

δµA/T = AJA + BJB , (1)

δµB/T = BJA + CJB . (2)

The Onsager matrix should be positive-definite: A and C must

be positive and B2 < AC. According to the conservation of B

atoms at the interface we also have [1,12]

−D1(n · ∇C1) = V C1 − JB , (3)

−D2(n · ∇C2) = V C2 − JB , (4)

V = JA + JB , (5)

where n is the unit vector normal to the interface and V is the

normal velocity of the interface. In this description the matrix

of Onsager coefficients describes a positive entropy production

(per unit area), T ṡ = JAδµA + JBδµB , in the interface region.

For the following it is useful to use V = JA + JB and

JB as independent fluxes and δµA and δµ = δµB − δµA

as corresponding driving forces. This choice preserves the

invariance of the entropy production,

T ṡ = JAδµA + JBδµB = V δµA + JBδµ. (6)

In this representation the linear relations between driving

forces and fluxes read

δµA/T = ĀV + B̄JB , (7)

δµ/T = B̄V + C̄JB , (8)

with A = Ā, B = B̄ + Ā, and C = C̄ + Ā + 2B̄. We note

that if f (C,T ) is the free energy density of the phase, then

often µ = µB − µA = ∂f/∂C is called the diffusion chemical

potential and µA = f (C) − µC the grand potential.

Phase field approach. We normalize the total free energy F

by T and write the dimensionless free energy G in the standard

form for phase field models,

G = F/T =
∫

dV {H [W 2(∇φ)2/2 + fDW(φ)] + g(C,φ)}.
(9)

Here fDW = φ2(1 − φ)2 is the normalized double-well po-

tential which has equal minima at φ = 0 and φ = 1; W

is the characteristic scale of the interface width; g(C,φ) is

the dimensionless density of the chemical free energy; H

represents the relative amplitude of the double-well potential

normalized by T and H is usually a large parameter. We

assume that bulk phase 1 corresponds to φ = 1 and bulk

phase 2 to φ = 0. Then, the dimensionless density of the bulk

free energy is g(C,1) = f1(C)/T and g(C,0) = f2(C)/T . The

detailed form of g(C,φ) is model dependent.

We write the system of phase field equations in the

following variational form:

−δG/δφ = τ φ̇ + MφW (J · ∇φ), (10)

−∇(δG/δC) = MCWφ̇∇φ + J/D(φ), (11)

Ċ + (∇ · J) = 0. (12)

In the bulk of each phase only the J terms in Eqs. (11) and (12)

survive leading to the usual diffusional flux, J1 = −D1∇C1

and J2 = −D2∇C2, with the bulk diffusion coefficients, D1 =
[D(φ = 1)/T ]∂µ1/∂C and D2 = [D(φ = 0)/T ]∂µ2/∂C. In

the interface region all terms are important leading to more

complicated kinetics.

The expression for the total entropy production reads

Ṡ =
∫

dV [−φ̇δG/δφ − J · ∇(δG/δC)]

=
∫

dV [τ
(

φ̇
)2 + J2/D(φ) + (Mφ + MC)Wφ̇(J · ∇φ)].

(13)

Onsager symmetry requires

Mφ = MC = M. (14)

The conditions of positive-definiteness of the entropy produc-

tion read τ > 0, D(φ0) > 0, and

τ/M2 > max[W 2D(φ0)(∇φ0)2], (15)

where φ0 is the phase field distribution at thermodynamic

equilibrium.

In classical phase field models M = 0. The terms with M

represent kinetic cross coupling and introduce a new kinetic

coefficient. A term analogous to our term with MC has been
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introduced in [8,9] for a different purpose, using nonvariational

versions of phase field equations. The term with Mφ must be

included in a thermodynamically consistent theory due to On-

sager symmetry, Eq. (14), as soon as the MC term is included.

Reduction of the phase field description to the macroscopic

description. We integrate the phase field equations over

the interface region in order to derive effective boundary

conditions in the form of Eqs. (7) and (8). This will allow

us to express the macroscopic elements of the Onsager matrix

in terms of the phase field parameters and to have an additional

check of the symmetry condition.

We assume that the interface is locally flat because we

are mainly interested in kinetic effects rather than in the

Gibbs-Thomson curvature correction and denote the direction

normal to the interface by x. In the interface region we

make a quasistationary approximation, φ̇ ≈ −V φ′(x) and

Ċ ≈ −V C ′(x), due to the strong gradients of φ and C in

this region even at thermodynamic equilibrium. Integrating the

continuity equation (12) in the interface region and choosing

the integration constant equal to −JB we find

J (x) ≈ −JB + V C(x). (16)

Equation (16) then reproduces the macroscopic continuity

equations (3) and (4) if the observation point x is chosen in

phase 1 or 2 near the interface. We integrate Eq. (11),

δµ/T = V

[

MCW

∫

W

dx[φ′
0(x)]2 −

∫

W

dx C0(x)/D(φ0)

]

+ JB

∫

W

dx/D(φ0), (17)

and, multiplying Eq. (10) by φ′(x) and integrating over the

same region, we find

δµA/T =V

[

τ

∫

W

dx[φ′
0(x)]2 +

∫

W

dx C2
0 (x)/D(φ0)

− (Mφ + MC)W

∫

W

dx[φ′
0(x)]2C0(x)

]

+ JB

[

MφW

∫

W

dx[φ′
0(x)]2−

∫

W

dx C0(x)/D(φ0)

]

.

(18)

Here
∫

W
denotes the integral over the interface region whose

width is of order W , but such that φ ranges from φ ≈ 1 to

φ ≈ 0. We have replaced φ(x) and C(x) by their equilibrium

distributions φ0(x) and C0(x) due to linearization. We have also

used the following steps in order to integrate the left-hand side

of Eq. (10). First, the contribution proportional to H vanishes

[13]. Second, we write
∫

W

dx φ′(x)∂g/∂φ =
∫

W

dg −
∫

W

dx C ′(x)∂g/∂C, (19)

integrate the last term by parts
∫

W

dx φ′(x)∂g/∂φ = δµA/T +
∫

W

dx C(x)(∂g/∂C)′,(20)

and use again Eq. (11) for (∂g/∂C)′.
As expected Eq. (18) has the form of Eq. (7), and Eq. (17)

has the form of Eq. (8). The Onsager symmetry of Eqs. (7) and

(8) requires Mφ = MC = M , which confirms Eq. (14). We

can also easily check that the interfacial part of the entropy

production, Eq. (13), reduces to the form of Eq. (6) with δµ

given by Eq. (17) and δµA given by Eq. (18). It is of course

positive if the condition (15) is fulfilled. The phase field model

presented here contains three independent inverse velocity

scales describing the interface kinetics, τ/W ,
∫

W
dx/D(φ),

and M , while classical phase field models include only two.

Explicit example and numerical checks. Our aim now is to

compare quantitatively the simulation results within a specific

phase field model to the solution of the corresponding macro-

scopic description using the reduction presented above. We

focus on the one-dimensional steady-state growth of phase 1

at the expense of phase 2, a case where the growth velocity V

is kinetically controlled. Due to the global conservation law,

the concentration C1 in phase 1 is constant, C1 = C∞, where

C∞ is the concentration far ahead of the interface in phase 2.

Within the macroscopic description, in the limit of small

velocity, V and C2 read [7]

V =
[

f ′′
1

(

C
eq

1

)

/T
](

C
eq

1 − C∞
)

�C

Ā + B̄
(

C
eq

1 + C
eq

2

)

+ C̄C
eq

1 C
eq

2

, (19)

f ′′
2

(

C
eq

2

)

T

(

C2 − C
eq

2

)

=
f ′′

1

(

C
eq

1

)

T

(

C∞ − C
eq

1

)

+
(

B̄ + C̄C
eq

1

)

V,

(20)

where f ′′
i (C) is the second derivative of fi(C) with respect

to C and �C = C
eq

2 − C
eq

1 with C
eq

1 (C
eq

2 ) the two-phase

equilibrium concentration of phase 1 (2).

We use a simple phase field model for which the chemical

free energy densities f1(C) and f2(C) of phases 1 and 2

parabolically depend on the concentration,

g(C,φ) = 1
2

[

C − C
eq

2 + p(φ)�C
]2

, (21)

with p(φ) = φ3(10 − 15φ + 6φ2) (see, for example, [14]). For

an equilibrium interface centered at x = 0, we have φ0(x) =
1/2 − tanh[x/(

√
2W )]/2 with φ0 = 1 in phase 1 and φ0 = 0

in phase 2; C0(x) = (C
eq

1 + C
eq

2 )/2 + u(x)�C/2 with u(x) =
−u(−x) = 1 − 2p[φ0(x)].

For simplicity and to make further analytical progress,

we assume a constant diffusion coefficient D(φ) = D. This

assumption is physically more relevant to solid-solid transfor-

mations than to solidification problems where D1 ≪ D2. We

perform the integrations in Eqs. (17) and (18) in a symmetric

range [−δ,δ] around x = 0 yielding

Ā =
ατ

W
− βW�C2/(4D)

+
[(

C
eq

1

)2 +
(

C
eq

2

)2]

δ/D − Mα
(

C
eq

1 + C
eq

2

)

, (22)

B̄ = Mα −
(

C
eq

1 + C
eq

2

)

δ/D, (23)

C̄ = 2δ/D, (24)

where δ ∼ W but such that φ0(−δ) ≈ 1 and φ0(δ) ≈ 0. Then

α = W

∫ δ

−δ

dx [φ′
0(x)]2 ≈ W

∫ ∞

−∞
dx [φ′

0(x)]2 ≈ 0.23570 ,

β =
∫ δ

−δ

dx

W
[1 − u2(x)] ≈

∫ ∞

−∞

dx

W
[1 − u2(x)] ≈ 1.40748,
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FIG. 1. Dimensionless velocity V τ/W vs concentration of the

system C∞ for different values of M (crosses: MW/τ = 2; cir-

cles: MW/τ = 0) compared with the analytical prediction (line)

of Eq. (25). The case MW/τ = −2 is indistinguishable from

MW/τ = 2.

due to the fast convergence of the integrals. Using the latter

kinetic coefficients in Eqs. (19) and (20), we find V and C2

[f ′′
1 (C

eq

1 )/T = f ′′
2 (C

eq

2 )/T = 1]:

V =
(

C
eq

1 − C∞
)

�C

ατ/W − βW�C2/(4D)
, (25)

C2 = C
eq

2 + C∞ − C
eq

1 + (Mα − δ�C/D)V. (26)

While the velocity is essentially independent of the integration

range δ as discussed in [7], the concentration C2 depends

on δ. We note that in our reduced description the interface

concentrations and chemical potentials are actually defined at

the spatial points x = ±δ and vary slightly with δ due to weak

gradients if the system slightly deviates from equilibrium. For

a more detailed discussion of this issue and its relation to the

extrapolation procedure in the thin interface limit [10], see [7].

In Fig. 1, we compare the dimensionless velocity V τ/W as

a function of C∞ given by the analytical formula, Eq. (25),

and that obtained from phase field simulations. The two

equilibrium concentrations are C
eq

1 = 0.3 and C
eq

2 = 0.7, the

diffusion coefficient (constant throughout the whole system)

is Dτ/W 2 = 0.5, and H = 50 (we checked that the results are

essentially independent of H for such large values). We find

a good quantitative agreement in the linear regime, i.e., for

small velocities. The simulations reproduce the independence

of M for the velocity in the linear regime [see Eq. (25)].

Nonlinearities of the phase field model naturally lead to

deviations at higher velocities. We mention that here the

denominator in Eq. (25) is positive. For smaller values of D, the

denominator may be negative and steady-state solutions exist

even for C∞ > C
eq

1 (see, for example, [7,15,16] and references

therein).

In Fig. 2, we present the partition coefficient k = C1/C2

(we recall that in steady-state C1 = C∞) as a function of the

FIG. 2. Partition coefficient k vs dimensionless velocity for

different values of M (crosses: MW/τ = 2; circles: MW/τ = 0;

triangles: MW/τ = −2) compared with the corresponding analytical

prediction (lines) of Eq. (26) with δ = 2
√

2W .

dimensionless velocity for Mτ/W = −2, 0, and 2, with C2

measured at x = δ = 2
√

2W . While the experimental values

of kinetic coefficients for most alloys are not known, the

only restriction on the kinetic parameter M is given by the

stability condition, Eq. (15). In our example we, of course, have

used values of M well below this threshold (at the middle of

the stability range) and thus believe that this example can

be illustrative for real binary alloys. The classical phase

field model (M = 0) shows already the solute trapping effect

(increase of the partition coefficient with velocity) while

positive values of M show antitrapping tendency, and negative

values of M promote further solute trapping. This was the

reason for the authors of [8,9] to include a term with positive

MC in Eq. (11) calling it an antitrapping current. However,

we understand now that a thermodynamically consistent

description requires simultaneously to include the term with

Mφ = MC in the phase field equation (10).

We have also checked numerically the stability condition of

Eq. (15) [for our explicit example it reads 8τ/(DM2) > 1] by

investigating the relaxation to the equilibrium configuration.

If the condition is violated by 1.5% the system “blows up”

instead of relaxing to the equilibrium.

Summary. We have formulated a phase field model given

by Eqs. (9)–(12). It includes Onsager kinetic cross coupling

between the nonconserved phase field φ and the conserved

concentration field C. We have performed the reduction of

this model to the corresponding macroscopic description

given by Eqs. (17) and (18). This model should be ap-

plicable to the step dynamics in molecular beam epitaxy

(see [17] for a recent review) and newly introduced cross

terms should be responsible for the Ehrlich-Schwoebel effect.

A detailed discussion of this question will be published

elsewhere.
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