000201464 001__ 201464
000201464 005__ 20230217124355.0
000201464 0247_ $$2doi$$a10.1103/PhysRevE.88.022406
000201464 0247_ $$2ISSN$$a1063-651X
000201464 0247_ $$2ISSN$$a1095-3787
000201464 0247_ $$2ISSN$$a1539-3755
000201464 0247_ $$2ISSN$$a1550-2376
000201464 0247_ $$2Handle$$a2128/8757
000201464 0247_ $$2WOS$$aWOS:000323576400009
000201464 037__ $$aFZJ-2015-03759
000201464 041__ $$aEnglish
000201464 082__ $$a530
000201464 1001_ $$0P:(DE-Juel1)130562$$aBoussinot, G.$$b0
000201464 245__ $$aInterface kinetics in phase-field models: Isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy
000201464 260__ $$aCollege Park, Md.$$bAPS$$c2013
000201464 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2013-08-26
000201464 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2013-08-01
000201464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433919269_12153
000201464 3367_ $$2DataCite$$aOutput Types/Journal article
000201464 3367_ $$00$$2EndNote$$aJournal Article
000201464 3367_ $$2BibTeX$$aARTICLE
000201464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201464 3367_ $$2DRIVER$$aarticle
000201464 520__ $$aWe present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.
000201464 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201464 542__ $$2Crossref$$i2013-08-26$$uhttp://link.aps.org/licenses/aps-default-license
000201464 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201464 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b1$$eCorresponding Author
000201464 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.88.022406$$bAmerican Physical Society (APS)$$d2013-08-26$$n2$$p022406$$tPhysical Review E$$v88$$x1539-3755$$y2013
000201464 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.88.022406$$gVol. 88, no. 2, p. 022406$$n2$$p022406$$tPhysical review / E$$v88$$x1539-3755$$y2013
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.pdf$$yOpenAccess
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.gif?subformat=icon$$xicon$$yOpenAccess
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201464 8564_ $$uhttps://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201464 909CO $$ooai:juser.fz-juelich.de:201464$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201464 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201464 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201464 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000201464 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201464 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201464 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201464 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201464 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201464 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201464 920__ $$lyes
000201464 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000201464 980__ $$ajournal
000201464 980__ $$aVDB
000201464 980__ $$aFullTexts
000201464 980__ $$aUNRESTRICTED
000201464 980__ $$aI:(DE-Juel1)PGI-2-20110106
000201464 9801_ $$aFullTexts
000201464 999C5 $$1N. Provatas$$2Crossref$$9-- missing cx lookup --$$a10.1002/9783527631520$$y2010
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.matsci.32.112001.132041
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.fluid.30.1.139
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rsta.1951.0006
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.981
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1726787
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1707904
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1657442
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.5500
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.49.435
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.86.060601
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.87.012402
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.115701
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.70.061604
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.53.R3017
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.57.4323
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.64.021604
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.49.2601
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.4444
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.68.021604
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.85.031601
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-0248(81)90209-8
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.72.011602
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.45.3718
000201464 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/6/14/005