001     201464
005     20230217124355.0
024 7 _ |a 10.1103/PhysRevE.88.022406
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2128/8757
|2 Handle
024 7 _ |a WOS:000323576400009
|2 WOS
037 _ _ |a FZJ-2015-03759
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Boussinot, G.
|0 P:(DE-Juel1)130562
|b 0
245 _ _ |a Interface kinetics in phase-field models: Isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy
260 _ _ |a College Park, Md.
|c 2013
|b APS
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2013-08-26
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2013-08-01
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433919269_12153
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
542 _ _ |i 2013-08-26
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Brener, Efim
|0 P:(DE-Juel1)130567
|b 1
|e Corresponding Author
773 1 8 |a 10.1103/physreve.88.022406
|b American Physical Society (APS)
|d 2013-08-26
|n 2
|p 022406
|3 journal-article
|2 Crossref
|t Physical Review E
|v 88
|y 2013
|x 1539-3755
773 _ _ |a 10.1103/PhysRevE.88.022406
|g Vol. 88, no. 2, p. 022406
|0 PERI:(DE-600)2844562-4
|n 2
|p 022406
|t Physical review / E
|v 88
|y 2013
|x 1539-3755
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201464/files/PhysRevE.88.022406.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201464
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130567
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130567
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
999 C 5 |a 10.1002/9783527631520
|1 N. Provatas
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |a 10.1146/annurev.matsci.32.112001.132041
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.fluid.30.1.139
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsta.1951.0006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.82.981
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1726787
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1707904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1657442
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.41.5500
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.49.435
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.86.060601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.87.012402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.115701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.70.061604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.53.R3017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.57.4323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.64.021604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.49.2601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.4444
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.68.021604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.85.031601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-0248(81)90209-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.72.011602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.45.3718
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/6/14/005
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21