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(Received 1 October 2014; revised manuscript received 20 November 2014; published 3 December 2014)

The transport properties of a large-spin molecule strongly coupled to ferromagnetic leads in the presence

of transverse magnetic anisotropy are studied theoretically. The relevant spectral functions, linear-response

conductance, and the tunnel magnetoresistance are calculated by means of the numerical renormalization group

method. We study the dependence of transport characteristics on orbital level position, uniaxial and transverse

anisotropies, external magnetic field, and temperature. It is shown that while uniaxial magnetic anisotropy leads

to the suppression of the Kondo effect, finite transverse anisotropy can restore the Kondo resonance. The effect

of Kondo peak restoration strongly depends on the magnetic configuration of the device and leads to nontrivial

behavior of the tunnel magnetoresistance. We show that the temperature dependence of the conductance at points

where the restoration of the Kondo effect occurs is universal and shows a scaling typical for usual spin-one-half

Kondo effect.
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I. INTRODUCTION

Knowledge of transport properties of individual large-

spin (S > 1/2) atoms [1–3] or single-molecule magnets

(SMMs) [4–9] that exhibit magnetic anisotropy is of key

importance from the point of view of information process-

ing technologies [2,10]. The ultimate aim is to incorporate

such objects as functional elements of spintronic devices,

with the objective of employing spin-polarized currents to

control the magnetic state of the system. In particular, for

an atom/molecule with the predominant “easy-axis” uniaxial

magnetic anisotropy this allows for switching the system’s

spin between two metastable states [11–15]. However, apart

from the uniaxial magnetic anisotropy underlying the magnetic

bistability, adatoms and SMMs usually possess also the trans-

verse component of the anisotropy [4]. If the latter component

is sufficiently large, not only may it impede the spin switching

process [16], but also it leads to additional quantum effects,

such as oscillations due to the geometric Berry phase [17] or

quantum tunneling of magnetization (QTM) [18–21], which

can manifest in transport characteristics [22–24].

Equally interesting is the situation of the strong-coupling

regime, where the Kondo correlations emerge, so that anoma-

lous signatures in transport become apparent for temperatures

lower than the Kondo temperature TK [25,26]. Notably, for

spin-one-half (S = 1/2) systems the linear-response conduc-

tance can then achieve the unitary limit of 2e2/h [27,28]. In

the case of S > 1/2, depending on the number of screening

channels, one can observe more exotic types of the Kondo

effect, such as, e.g., the underscreened Kondo effect, which

emerges when the number of screening channels is smaller

than 2S [29,30]. Such situation occurs in molecular or in left-

right asymmetric junctions [8,31]. In large-spin systems a key

factor determining whether the Kondo effect will occur or not is

actually the magnetic anisotropy [32–34]. For a sole uniaxial

component of magnetic anisotropy, the effect was observed

only if the planar state was preferred [1,8], and expected to be

*misiorny@amu.edu.pl

inhibited otherwise [35–37]—single-electron spin-exchange

processes within the ground-state doublet involving the axial

states are forbidden for S > 1/2. Interestingly, in the latter case

the Kondo effect can be in principle restored if one allows for

mixing of the two axial states, which can be accomplished

by introduction of the transverse component of magnetic

anisotropy [38–40].

Although the role of the transverse magnetic anisotropy in

the formation of the Kondo effect has been studied extensively

for normal electrodes [32,38–46], not much is known about

spin-polarized transport in such a case. For this reason, in

the present paper we address the problem of spin-resolved

transport through large-spin nanostructures in the presence of

transverse magnetic anisotropy focusing on the Kondo regime.

The presence of ferromagnetic electrodes results in exchange

fields, which can lead to the spin splitting of the levels of the

nanostructure [47–54]. The exchange fields are thus another

relevant energy scale in the problem, which determines the

occurrence of the Kondo effect and thus conditions the trans-

port properties of the system. In order to reliably analyze the

interplay of the effects due to the exchange fields and magnetic

anisotropy on our large-spin nanostructure, we employ the

numerical renormalization group (NRG) method [55]. This

method is known as one of the most accurate methods in

studying the transport properties of various quantum impurity

models [56].

The paper is organized as follows: In Sec. II we describe

the model Hamiltonian and method used to calculate the

transport properties. Section III contains numerical results

and their discussion. First, the ground-state properties of the

molecule are discussed (Sec. III A), then the behavior of the

relevant spectral functions is analyzed (Sec. III B). The level

and temperature dependence of the linear conductance and

TMR are presented in Sec. III C, while in Secs. III D and III E

we analyze how transport properties depend on the anisotropy

constants and on the transverse magnetic field applied to the

system. At the end of Sec. III we also discuss the universal

scaling of the linear conductance as a function of temperature.

Finally, the paper is concluded in Sec. IV.
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FIG. 1. (Color online) Schematic of a magnetic quantum dot. It

consists of a single conducting orbital level (OL) tunnel-coupled to

two ferromagnetic electrodes, with coupling strengths ŴL
σ and ŴR

σ ,

and exchange coupled (J ) to a magnetic core of large spin S > 1/2

exhibiting both uniaxial and transverse magnetic anisotropies. The

easy axis is oriented along the magnetization of the leads, which can

form either a parallel or antiparallel configuration.

II. THEORETICAL DESCRIPTION

A. Model

In order to grasp the essential features of a nanoscopic

system exhibiting magnetic anisotropy, we employ a model

consisting of a magnetic core represented by a large spin

S > 1/2, which is exchange coupled with strength J to a

single conducting orbital level (OL); see Fig. 1. Such a generic

model of the molecule will henceforward be referred to as the

magnetic quantum dot (MQD) [57], and it can be characterized

by the Hamiltonian of the form,

ĤMQD = ĤOL + ĤS − J ŝ · Ŝ + B · (ŝ + Ŝ). (1)

In the above, the first term describes the orbital level,

ĤOL = ε
∑

σ

n̂σ + Un̂↑n̂↓, (2)

where n̂σ = ĉ†σ ĉσ denotes the occupation operator and ĉ†σ (ĉσ )

stands for the operator creating (annihilating) a spin-σ electron

of energy ε in the OL, while U accounts for the Coulomb

energy of two electrons of opposite spins dwelling in the

orbital. Furthermore, we assume that only the core spin is

subject to magnetic anisotropy, and thus, at sufficiently low

temperatures, its magnetic properties can be captured by the

giant-spin Hamiltonian [4],

ĤS = −DŜ2
z + E

(

Ŝ2
x − Ŝ2

y

)

. (3)

Here, the first/second term stands for the uniaxial/transverse

magnetic anisotropy, with D and E being the relevant

anisotropy parameters, and Ŝj (j = x,y,z) representing the

j th component of the MQD’s core spin operator Ŝ. Note that

the transverse component is commonly expressed in terms

of the spin ladder operators, Ŝ± = Ŝx ± iŜy , taking thus the

form (E/2)(Ŝ2
+ + Ŝ2

−). We focus then on the case of a system

displaying magnetic anisotropy of an easy-axis type, that is,

for D > 0, assuming in addition that the transverse anisotropy

constant is positive, E > 0, and varies within the range

0 ≤ E/D ≤ 1/3 [4]. Setting such constrictions on values of

D and E allows for distinguishing the principal axes of the

system; see Fig. 1.

The next term of the Hamiltonian (1) is responsible for

the exchange interaction between the spin Ŝ of the MQD’s

magnetic core and the spin ŝ of an electron residing in the

OL, with ŝ = 1
2

∑

σσ ′ ĉ†σ σ̂ σσ ′ ĉσ ′ and σ̂ ≡ (σ̂ x,σ̂ y,σ̂ z) denoting

the Pauli spin operator. Since no restriction is imposed on

the sign of the parameter J , the interaction can be either

ferromagnetic (FM for J > 0) or antiferromagnetic (AFM

for J < 0). Finally, the last term of Eq. (1) accounts for

the Zeeman interaction, where B = (Bx,By,Bz) corresponds

to an external magnetic field measured in energy units, i.e.,

gµB ≡ 1.

Transport of electrons through the system is assumed to

take place only via the OL, which is tunnel-coupled to two

ferromagnetic metallic electrodes; see Fig. 1. It is worth a note,

however, that although the magnetic core is not tunnel-coupled

directly to electrodes, and thus it does not participate actively

in transport, it is still affected by their presence due to the

exchange interaction with conduction electrons occupying the

OL. The qth electrode [q = (L)eft,(R)ight] is modeled as a

reservoir of noninteracting itinerant electrons, and described

by

Ĥ
q

el =
∑

σ

∫ W

−W

dǫ ǫ â†
qσ (ǫ)âqσ (ǫ), (4)

where â
†
qσ (ǫ) is the relevant operator responsible for creation

of a spin-σ electron and W denotes the band half-width. In

general, the orientation of electrodes’ magnetic moments with

respect to each other and the system’s principal axes can be

arbitrary. For the sake of simplicity, though, at present we

limit the discussion to the situation when magnetic moments

of electrodes are collinear (parallel or antiparallel), and their

orientation also coincides with that of the system’s easy axis.

In such a case, tunneling of electrons between the MQD and

electrodes is characterized by

Ĥtun =
∑

qσ

√

Ŵ
q
σ

π

∫ W

−W

dǫ[â†
qσ (ǫ)ĉσ + ĉ†σ âqσ (ǫ)], (5)

with Ŵ
q
σ representing the strength of spin-dependent tunnel-

coupling (hybridization) between the OL and the qth electrode.

Assuming now that both electrodes are made of the same

material, described by the spin polarization coefficient P ,

the hybridization can be parametrized as ŴL
↑(↓) = (Ŵ/2)(1 ±

P ) and ŴR
↑(↓) = (Ŵ/2)(1 ∓ P ) for the antiparallel magnetic

configuration of electrodes, and ŴL
↑(↓) = (Ŵ/2)(1 ± P ) and

ŴR
↑(↓) = (Ŵ/2)(1 ± P ) for the parallel one.

B. Method

To analyze the influence of transverse magnetic anisotropy

on the linear-response transport properties of a large-spin

molecule in the strong tunnel-coupling (Kondo) regime, we

calculate the linear conductance G from the formula [59],

G =
2e2

h

∑

σ

2ŴL
σ ŴR

σ

ŴL
σ + ŴR

σ

∫

dω

(

−
∂f (ω)

∂ω

)

πAσ (ω), (6)
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where f (ω) denotes the Fermi-Dirac distribution function,

while Aσ (ω) is the spin-dependent spectral function of the

OL,

Aσ (ω) = −
1

π
Im〈〈ĉσ |ĉ†σ 〉〉r

ω. (7)

In the equation above, 〈〈ĉσ |ĉ†σ 〉〉r
ω represents the Fourier

transformation of the retarded Green’s function 〈〈ĉσ |ĉ†σ 〉〉r
t =

−iθ (t)〈{ĉσ (t),ĉ†σ (0)}〉 of the orbital level. To determine the

spectral function Aσ (ω), we use the Wilson’s numerical

renormalization group (NRG) method [55,56]. Specifically,

the recent idea of a full density matrix, [60] which allows

for reliable calculation of static and dynamic properties of

the system at arbitrary temperatures, is employed [61,62]. For

the present problem, the Ucharge(1) symmetry was exploited,

the discretization parameter 
 = 1.8 was used and we kept

Nk = 2500 states during calculations.

III. RESULTS AND DISCUSSION

A. Parameters

In our considerations we assume the following model

parameters: U/W = 0.4, Ŵ/U = 0.1, |J |/U = 0.01125, with

W ≡ 1 being the energy unit, while the spin polarization of the

leads is P = 0.5. Without loss of generality, we assume that

the molecule is characterized by a hypothetical spin S = 2. In

the case of J = 0, the Kondo temperature TK (expressed in

units of energy, kB ≡ 1) of the system for nonmagnetic leads

and for ε = −U/2, is T 0
K/W ≈ 0.002, which will be used

as a reference value. In this paper TK is extracted from the

temperature dependence of the total linear conductance as the

value of temperature T at which G(T )/G(T = 0) = 1/2.

B. Ground-state properties

Generally, the Kondo effect can arise in the system when

the OL is occupied by a single electron and temperature T is

lower than the Kondo temperature TK. Due to the exchange

interaction J between the spin of an electron in the OL and

the magnetic core effective spin, the MQD’s magnetic states

decompose into two spin multiplets, characterized by the total

spin number S ± 1/2, whose relative position is governed by

the sign of J . At sufficiently low temperatures, the transport

properties of the system can be entirely determined by its

ground state. Consequently, in order to gain a better under-

standing of the role the transverse anisotropy plays in transport

properties of the system, it may be instructive to analyze first

the ground state of an isolated MQD in two specific cases:

(1) when the core exhibits only uniaxial magnetic anisotropy,

and (2) when also the transverse component is present. Note

that, although in the following discussion we address an integer

spin S, analogous analysis can be carried out also for a system

with a half-integer spin S.

1. No transverse anisotropy (E = 0)

In the absence of external magnetic field, |B| = 0, the

Hamiltonian (1) can be diagonalized analytically and its

eigenstates enumerated with the eigenvalues M of the zth

component Ŝ t
z of the total spin operator Ŝt = Ŝ + ŝ [12,63].

As a result, the degenerate ground-state doublets for the spin

multiplet S + 1/2 (labeled “FM”) are found to be

∣

∣±S ± 1
2

〉

FM
= φ

↑(↓),±S

±S±1/2 |↑(↓)〉OL ⊗ |±S〉core, (8)

and for the spin multiplet S − 1/2 (labeled as “AFM”)

∣

∣±S ∓ 1
2

〉

AFM
= ψ

↓(↑),±S

±S∓1/2 |↓(↑)〉OL ⊗ |±S〉core

+ψ
↑(↓),±S∓1
±S∓1/2 |↑(↓)〉OL ⊗ |±S ∓ 1〉core,

(9)

where |•〉OL (core) denotes the spin state of the OL (magnetic

core), and φ
σ,m
M (ψ

σ,m
M ) ≡ [OL〈σ | ⊗ core〈m|]|M〉FM (AFM) repre-

sents the overlap of state |σ 〉OL ⊗ |m〉core with the eigenstate

|M〉FM (AFM). In the equations above σ stands for the spin index

of an electron in the OL, while m is the eigenvalue of the

internal spin operator Ŝz so that |m| = 0, . . . ,S. It goes without

saying that in Eq. (8) there must be φ
↑(↓),±S

±S±1/2 = 1, whereas the

explicit expressions for ψ
σ,m
M can be found, for instance, in

Ref. [63].

2. With transverse anisotropy (E �= 0)

For a finite component of transverse magnetic anisotropy

the relatively simple picture for the MQD’s ground state

developed above is no longer applicable. At present, each

of the 2S + 1 core-spin states |χ〉core,ĤS|χ〉core = Eχ |χ〉core,

can be a linear combination of the Sz eigenstates |m〉core.

In order to keep the notation transparent, let’s introduce

an auxiliary subscript ν, i.e., |χ〉core → |χν〉core, and as-

sume that |ν| = 0, . . . ,S. Then, if E 
= 0 and |B| = 0, one

can use the expansion |χν〉core =
∑

ξ core〈ν + 2ξ |χν〉core |ν +
2ξ 〉core, with the summation running over integer ξ satisfying

|ν + 2ξ | ≤ S. As a result, one observes that each of the

states |χν〉core is formed from states belonging exclusively

to one of two uncoupled sets: {l = 0,1, . . . ,S : |S − 2l〉core}
and {l = 0,1, . . . ,S − 1 : |S − 1 − 2l〉core} [23,38], i.e., each

grouping states |m〉core with the same parity with respect to m.

Furthermore, by analyzing how the HamiltonianHMQD acts on

the states |σ 〉OL ⊗ |χν〉core, one can deduce the corresponding

form of the MQD’s ground-state doublets:

|χ±S±1/2〉FM =
∑

m

{

φ↑,m
χ±S±1/2

|↑〉OL ⊗ |m〉core

+φ↓,m
χ±S±1/2

|↓〉OL ⊗ |m〉core

}

, (10)

|χ±S∓1/2〉AFM =
∑

m

{

ψ↓,m
χ±S∓1/2

|↓〉OL ⊗ |m〉core

+ψ↑,m
χ±S∓1/2

|↑〉OL ⊗ |m〉core

}

. (11)

Note that now the subscript ν in |χν〉FM (AFM) has a clear mean-

ing, namely it stands for the M component of highest weight

in the state |χν〉FM (AFM), so that |χM〉FM (AFM) ≡ |M〉FM (AFM)

for E → 0. In the present case, there are no general explicit

formulas for the coefficients φσ,m
χM

and ψσ,m
χM

for an arbitrary spin

number S, so that these have to be obtained numerically. In

addition, it is worth emphasizing that since S is integer, so that

S t is half-integer when the OL is occupied by a single electron,
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both ground states are still twofold degenerate (Kramers’

doublets). Consequently, one should expect the Kondo effect

to occur at sufficiently low temperatures.

C. Spectral functions

It has already been shown that if the magnetic core of

MQD exhibits the uniaxial component of magnetic anisotropy,

it can lead to the suppression of the Kondo effect [35,36].

Importantly, the occurrence of the Kondo effect is conditioned

by the competition between the energy scales set by the

exchange coupling J and T 0
K (the Kondo temperature in the

case of J = 0). For |J | < T 0
K , the system minimizes its energy

by forming the many-body Kondo state as a result of strong

hybridization between an electron in the OL and free electrons

in electrodes, whereas for |J | > T 0
K the electron’s spin couples

via exchange interaction with the core spin. In the latter

situation, the type of exchange interaction plays a crucial

role. In the case of vanishing anisotropy, for ferromagnetic

exchange coupling J , one always observes the Kondo effect at

sufficiently low temperatures [64], while for antiferromagnetic

J , the system exhibits a two-stage Kondo effect as a function

of temperature [65]. On the other hand, for finite magnetic

anisotropy, the above effects can be suppressed once |D| �
TK [34,66]. Here, we are in particular interested in the effects

resulting from transverse magnetic anisotropy, therefore in

the following we assume |J | > T 0
K . We also set the uniaxial

anisotropy to be D/T 0
K = 0.75, unless stated otherwise.

Besides the energy scales discussed above, in the case of

ferromagnetic leads the occurrence of the Kondo effect is

conditioned by the magnitude of the ferromagnetic-contact-

induced dipolar exchange field �εexch [47–49]. The Kondo

resonance is then suppressed when �εexch � TK [50–52].

�εexch results directly from spin dependence of the couplings

between the OL and the leads. For symmetric systems, in

the antiparallel configurations, the resultant coupling does

not depend on spin and the exchange field develops only in

the parallel magnetic configuration, with sign and magnitude

controllable by the gate voltage, �εexch ∝ log |ε/(ε + U )|.
Figure 2 depicts symbolically the effect of transverse

anisotropy on the ground state of the system. At low temper-

atures and for D,|J | > TK and E = 0, Fig. 2(a), the ground

state of the system is a doublet |±S t
z〉, which is energetically

well separated from the other excited states, so that the

transitions between states of the doublet are not permitted.

In the case of finite E, Fig. 2(b), such transitions can occur

and the system effectively behaves as an S = 1/2 pseudospin.

As a result, in the presence of transverse anisotropy, the

system can exhibit the Kondo effect. This behavior can be

observed in the dependence of the normalized spectral function

A(ω) = π
∑

σ ŴσAσ (ω) on energy ω (note the logarithmic

scale) and the OL position ε in the case of both parallel and

antiparallel magnetic configurations, shown in Fig. 3.
For finite D and E = 0, the Kondo effect becomes generally

suppressed, irrespective of the magnetic configuration and the
sign of the exchange coupling; see Figs. 3(a)–3(d). The origin
of this suppression can be qualitatively understood as follows.
Let us for simplicity consider the large-spin ground-state
doublet of a bare MQD, given by Eqs. (8) and (9). One then
finds that electron cotunneling processes that can result in

FIG. 2. (Color online) Symbolic illustration of the effect of trans-

verse magnetic anisotropy on the MQD’s ground state. At low

temperatures for D,|J | > TK and E = 0 (a), the transport properties

of the system are fully determined by its ground-state doublet |±S t
z〉,

which is then energetically well separated from the first excited

doublet, with the excitation energy Eexc depending both on the

magnetic core’s anisotropy and its exchange interaction with the

electron spin in the OL. Note that transitions between the states of

the doublet are not permitted. For E 
= 0 (b), on the other hand, such

transitions can occur (indicated by the double-arrow dashed line) and

the system effectively behaves as a one-a-half pseudospin.

reversing the spin of an electron in the OL do not permit direct
transitions within the doublet (effectively corresponding to
spin-exchange processes for the MQD’s total spin), regardless
of the sign of J , meaning that the many-body Kondo state
cannot be formed; Fig. 2(a). Furthermore, the suppression
is more pronounced for the AFM J coupling. This stems
from the differences in energies and forms of the ground-state
doublets for FM and AFM cases. In particular, since the
ground-state energy for |±S ∓ 1/2〉AFM is lower than that for
|±S ∓ 1/2〉FM, with the energies of virtual states for singly
and doubly occupied OL being independent of J , and, unlike
the state |±S ∓ 1/2〉FM, the state |±S ∓ 1/2〉AFM involves a
superposition of both OL spin states “up” and “down” [cf.
Eqs. (8) and (9)]; these translate into less efficient cotunneling
processes driving linear transport for the AFM J coupling.
Moreover, the suppression of the conductance in the local mo-
ment regime, −U < ε < 0, is more pronounced in the parallel
configuration as compared to the antiparallel configuration,
which is related to the presence of the exchange field.

Interestingly enough, when the transverse component

of magnetic anisotropy is additionally included, the sit-

uation changes dramatically, as this component [see the

second term of Eq. (3)] makes mixing of the core

spin states possible; Fig. 2(b). In consequence, each

of the states belonging to the FM/AFM ground-state

doublet becomes now a superposition of all available

OL electron spin states |σ 〉OL and core spin states

|m〉core [see Eqs. (10) and (11)]. Since φ↑(↓),m
χ±S±1/2

φ↓(↑),m
χ∓S∓1/2


= 0

(ψ↑(↓),m
χ±S∓1/2

ψ↓(↑),m
χ∓S±1/2


= 0), the effective spin-exchange processes

for the MQD’s total spin owing to the OL electron cotunneling

are allowed, and the ground-state doublet can effectually be

viewed as the pseudospin-1/2 system. This, in turn, manifests

as a revival of the Kondo effect in the case of finite E, as one

can see in Figs. 3(e)–3(h). It is also important to note a large

quantitative difference between the parallel and antiparallel

configurations in the case of finite transverse anisotropy.

While in the antiparallel configuration the Kondo resonance

is restored in the whole Coulomb blockade regime with a

single electron in OL, in the parallel configuration, the Kondo
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FIG. 3. (Color online) Dependence of total normalized orbital

level (OL) spectral function, A(ω) = π
∑

σ Ŵσ Aσ (ω), on energy

ω and the OL position ε for ferromagnetic (left column) and

antiferromagnetic (right column) exchange coupling in the case

of (a)–(d) vanishingly small, and (e)–(h) large value of transverse

magnetic anisotropy E. The first and third rows correspond to the

antiparallel magnetic configuration of electrodes, while the second

and fourth rows show the case of parallel magnetic configuration.

Insets in the bottom panels are magnifications of spectral functions

in the parameter space around the particle-hole symmetry point

(ε = −U/2), with the color scale kept the same as in other panels.

Note that since the ω and ε scales in both insets are assumed the same,

the restoration of the Kondo resonance in the inset to (h) is hardly

visible, although it occurs. Moreover, dashed lines as a guide for eyes

are added in the inset (h) to highlight the resonance splitting due to

the dipolar exchange field. Key parameters are given in the main text

with D/U = 3.75 × 10−3 (D/T 0
K = 0.75) and E is specified in the

bottom-right corner of each panel.

resonance occurs only at the particle-hole symmetry point,

that is, at the point where the dipolar exchange field cancels.

Moreover, the Kondo temperature in the parallel configuration

is much smaller than that in the antiparallel configuration

[see the insets in Figs. 3(g) and 3(h), which zoom into

the low-energy regime around the particle-symmetry point,

E D

E D

E D

E D

FIG. 4. (Color online) The normalized spectral functions at the

particle-hole symmetry point, ε = −U/2, in both magnetic config-

urations and for E/D = 0 (dashed lines) and E/D = 1/3 (solid

lines). The left panel corresponds to the case of ferromagnetic

(J > 0) exchange coupling, while the right panel corresponds to the

case of antiferromagnetic (J < 0) exchange interaction. The other

parameters are the same as in Fig. 3.

ε = −U/2]. This is because the effective exchange coupling

between the spin in the MQD and the spins of conduction

electrons is lowered by a lead-spin-polarization dependent

factor smaller than unity [47].

The difference between the cases of the vanishing and finite

transverse anisotropy constant can be explicitly seen in Fig. 4,

which shows the normalized spectral functions calculated for

ε = −U/2 for both magnetic configurations in the case of

ferromagnetic and antiferromagnetic J (i.e., the relevant cross

sections from Fig. 3). Clearly, irrespective of the sign of the

exchange coupling J , finite transverse anisotropy restores the

Kondo effect. The restoration can be observed in both magnetic

configurations with the Kondo temperature much smaller in the

parallel configuration compared to the antiparallel one.

D. The linear conductance and TMR

The subtle interplay between all the energy scales is

also visible in the behavior of the linear conductance G.

In addition, to describe the change of system transport

properties when the magnetic configuration is varied between

parallel and antiparallel, we study the behavior of the tunnel

magnetoresistance, which is defined as [67]

TMR =
GP − GAP

GAP

, (12)

where GP (GAP) represents the linear conductance in the

parallel (antiparallel) configuration.

1. Orbital level dependence

The orbital level dependence of GP, GAP, and TMR is

shown in Fig. 5 for both ferromagnetic and antiferromagnetic

exchange coupling J and for different values of the transverse

anisotropy constant E. In the case when the orbital level is

empty (ε > 0) or doubly occupied (ε < −U ) the coupling

to the core spin does not play any role and the conductance

does not depend on E. This is contrary to the case when

the OL is singly occupied (−U < ε < 0); see Fig. 5. In the

antiparallel configuration of electrodes’ magnetic moments,

Figs. 5(a) and 5(b), the conductance is then suppressed for
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FIG. 5. (Color online) The linear conductance G for the antipar-

allel (AP), (a) and (b), and parallel (P), (c) and (d), magnetic

configuration, and the corresponding TMR (e) and (f), shown as a

function of the OL energy ε for different values of the transverse

anisotropy constant E. (g) and (h) The dependence of GP and

GAP on the transverse magnetic anisotropy (scaled with respect to

the uniaxial anisotropy) for ε = −U/2 and ε = −U/3 [see vertical

dashed lines in (a)–(f)]. Corresponding TMR is shown in the inset to

(h). Left/right column represents the case of the ferromagnetic (J >

0)/antiferromagnetic (J < 0) exchange interaction. The parameters

are as in Fig. 3 with T/W = 10−8 (T/T 0
K = 5 × 10−6).

E = 0 and increases with increasing E to its maximum value

of (2e2/h)(1 − P 2).

On the other hand, in the parallel magnetic configuration,

Figs. 5(c) and 5(d), due to the presence of the exchange

field, the ground-state doublet is split, so that the influence

of magnetic anisotropy is limited only to the particle-hole

symmetry point (ε = −U/2) where the field disappears, and

the conductance can reach the limit value of the conductance

quantum 2e2/h. Furthermore, with increasing the transverse

magnetic anisotropy constant towards its maximal value, i.e.,

E/D → 1/3, one observes that the differences between the

cases of FM and AFM J coupling are almost indistinguishable.

In fact, in this limit transport signatures of the MQD start

resembling these typical to a single-level quantum dot [68],

that is, corresponding to an MQD in the limit of vanishingly

small exchange interaction J → 0.

The difference between the linear conductance in the two

magnetic configurations of the system is reflected in the TMR,

which is shown in Figs. 5(e) and 5(f). For large transverse

anisotropy, E/D = 1/3, the TMR for ε = −U/2 is given by

P 2/(1 − P 2), while for −U < ε < 0 and ε 
= −U/2, GP is

suppressed by the exchange field and TMR → −1. However,

for smaller transverse anisotropy, |TMR| is decreased for both

positive and negative exchange interaction J . This is because

GAP drops with decreasing E, while GP does not depend on E

for ε 
= −U/2, i.e., for such level position where the exchange

field is present.

The explicit dependence of linear conductance and TMR

on E is shown in Figs. 5(g) and 5(h). It can be seen

that the precise value of transverse magnetic anisotropy for

which the conductance reaches its maximum value depends

on parameters of the model. Quite generally, the Kondo

effect is already well restored for E/D � 1/5. The resulting

dependence of TMR on E is presented in the inset to Fig. 5(h).

For ε = −U/2, the TMR exhibits a minimum for such E

where the conductance starts increasing and then increases to

the value of P 2/(1 − P 2). On the other hand, for ε = −U/3,

the TMR decreases with increasing E reaching large negative

value with TMR ≈ −1. This basically means that the MQD

conducts better in the antiparallel magnetic configuration,

which stems from the presence of the dipolar exchange field

in the parallel configuration in the case under consideration.

2. Temperature dependence

Although in Fig. 5 the complete restoration of the Kondo

effect occurs only for E/D � 1/5, one should bear in mind

that these results have been obtained for a specific, finite

temperature. In fact, it turns out that the effect can be reinstated

for any E 
= 0 with the Kondo temperature depending now on

E. Figures 6 and 7 illustrate the temperature dependence of

the linear conductance for indicated values of the transverse

anisotropy constant E and two distinctive values of the OL

energy: ε = −U/2 (Fig. 6) and ε = −U/3 (Fig. 7). The

essential difference between these two cases stems from

the absence (presence) of the effective exchange field for

ε = −U/2 (ε = −U/3) in the parallel configuration, which

is reflected in the behavior of TMR. In particular, this

effective field leads to the splitting of the ground-state doublet,

precluding in consequence the formation of the Kondo effect

for ε = −U/3.

First of all, one can notice that Kondo temperatures

observed in the situation when the Kondo effect originates

from the transverse magnetic anisotropy are generally lower

than the reference Kondo temperature T 0
K of a single-level

quantum dot (that is, for J = 0); see Fig. 8. Furthermore, at the

particle-hole symmetry point (ε = −U/2) these temperatures

depend also on the magnetic configuration of electrodes, being

lower for the parallel configuration [cf. (a) and (b) with (c) and

(d) in Fig. 6]. Such disparity, in turn, reveals clearly as a

nonmonotonic dependence of TMR on temperature T .
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FIG. 6. (Color online) The temperature dependence of the linear

conductance G in the antiparallel, (a) and (b), and parallel, (c) and (d),

configurations, and the resulting TMR, (e) and (f), for several values

of the transverse anisotropy parameter E and for ε = −U/2. Solid

lines represent the case when the transverse magnetic anisotropy is

absent (E = 0). Vertical dashed lines represent the temperature used

in Fig. 5, T/T 0
K = 5 × 10−6. Remaining parameters are as in Fig. 3.

In the limit of large T , D ≫ T ≫ TK, the system remains

in the low-conducting state with the value of conductance

being insensitive to the presence of the transverse magnetic

anisotropy. On the contrary, its presence becomes clearly

visible in the limit of low T , T ≪ TK, where for E 
= 0 the

system enters the high-conducting state due to the Kondo

effect, provided that the ground-state doublet is not affected

by the effective exchange field. In the present situation, in

particular, it implies that no Kondo effect, and accordingly

no high-conducting state, should generally be expected in

the parallel configuration except for ε = −U/2 [cf. Figs. 6(c)

and 6(d) and solid lines marked as GP in Figs. 7(a) and 7(b)]. As

a result, one observes that for E 
= 0 both in the limit of large

and low temperature, marked in Figs. 6 and 7 as shaded areas,

TMR takes constant asymptotic values which are independent

of the actual value of E.

On the other hand, the presence of transverse magnetic

anisotropy manifests in TMR for the intermediate range of

temperatures with respect to the limiting cases discussed

above. For the particle-hole symmetry point ε = −U/2,

Figs. 6(e) and 6(f), one observes then a global minimum in

TMR to develop. This reflects the fact that for a given value

of E the Kondo temperature TK differs for the antiparallel and

parallel magnetic configuration of electrodes, with TK being

generally lower in the latter case. The reason for this difference

G

G

T      T T T

E D

E D

E D

E D

E D

E D

G

FIG. 7. (Color online) Analogous to Fig. 6, but for ε = −U/3.

Note that due to the presence of the effective exchange field for the

parallel magnetic configuration the restoration of the Kondo effect

does not take place, so that only the results for the antiparallel mag-

netic configuration, (a) and (b), are of main interest. Nevertheless, for

the sake of completeness, bold solid lines representing conductance

GP in the parallel configuration are also plotted. In order to enable

comparison with the case of ε = −U/2, the range of scales for all

axes is assumed the same as in Fig. 6. Remaining parameters are as

in Fig. 3.

was explained in the previous section. A qualitatively different

behavior of TMR is seen for ε = −U/3, Figs. 7(c) and 7(d),

where the temperature dependence of TMR is dominated

by the monotonic increase in the temperature range under

discussion with only negative values observed. The main

reason for this is the presence of the effective exchange field

in the parallel magnetic configuration, which, by splitting

the ground-state doublet, prevents the Kondo effect from

taking place; Figs. 7(a) and 7(b). In consequence, neither the

conductance GP reaches the unitary limit at low temperatures

nor does it depend on E.

E D

T
T

FIG. 8. (Color online) Kondo temperature as a function of the

transverse magnetic anisotropy constant E, estimated from the

temperature dependence of G for different magnetic configurations

and different types of the J coupling presented in Figs. 6 and 7.
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FIG. 9. (Color online) The influence of the interplay of uniaxial

(D) and transverse (E) magnetic anisotropy on transport properties

of the system. The linear conductance G (a)–(d) and TMR, (e)

and (f), are shown as a function of D for two chosen values of

the ratio E/D, with full (open) points corresponding to ε = −U/2

(ε = −U/3). Vertical dashed lines indicate the value of D used so

far. The parameters are as in Fig. 3 with T/T 0
K = 5 × 10−6.

Finally, in Fig. 8 values of the Kondo temperature TK

derived from the T dependencies of conductance shown in

Figs. 6 and 7 are presented as a function of the transverse

magnetic anisotropy constant E. One can see that not only

does TK generally decrease with lowering E, but also its

value substantially depends on the type of the J coupling.

Specifically, one obtains larger values of TK in the FM

case (J > 0). Moreover, at the particle-hole symmetry point

ε = −U/2 (Fig. 6) for a given E larger Kondo temperature

is observed for the antiparallel magnetic configuration of

electrodes, but, on the other hand, it is lower that its value

in the corresponding case for ε = −U/3 (Fig. 7).

E. Uniaxial vs transverse magnetic anisotropy

Up to this point, the discussion has been based on the

assumption that the value of the uniaxial anisotropy parameter

D takes one specific value of D/T 0
K = 0.75, which is larger

than Kondo temperature TK estimated in the presence of

transverse magnetic anisotropy (see Fig. 8). To make the

discussion complete, we relax this assumption and analyze

how the value of D influences the transport properties of MQD

in the Kondo regime when E 
= 0. For this purpose, in Fig. 9

we plot the dependence of the linear conductance and TMR

on D for two selected values of E/D, both at the particle-hole

symmetry point ε = −U/2 (full points in Fig. 9) and away

from this point at ε = −U/3 (open points in Fig. 9).

T T

G

T T

G
G

E D

E D

E D

E D
D E

G G

FIG. 10. (Color online) The temperature dependence of the lin-

ear conductance for both magnetic configurations in the case of

ε = −U/2 (a) and ε = −U/3 (b) for different values of the transverse

anisotropy constant E and D/T 0
K = 10−6. Note that only the FM type

of the J coupling is considered here, and the used value of D/T 0
K

corresponds to the lowest value of D/T 0
K shown in Fig. 9. Moreover,

vertical dashed lines indicate the temperature for which Fig. 9 was

calculated. All other parameters are as in Fig. 3.

To begin with, it can be easily seen that in the limit of strong

uniaxial anisotropy, D/T 0
K > 1, the MQD exhibits transport

properties typical to the low temperature limit discussed in

the previous section. In particular, as long as the effective

exchange field is absent, conductance achieves the unitary

limit of 2e2/h in the parallel configuration and 2(1 − P 2)e2/h

in the antiparallel configuration. Physically, such a limit

corresponds to the situation when the ground-state pseudospin

doublet is very well separated from other excited states of

the spin multiplet. Once the value of D gets decreased, it

is also followed by the reduction of the linear conductance.

Interestingly enough, further diminishing of D (recall that E

becomes also reduced, as we keep E/D constant) towards the

limit of D/T 0
K ≪ 1 results in a strikingly different behavior of

the system, which now depends on the type of the J coupling

and the magnetic configuration of electrodes.

In the antiparallel configuration and the FM (J > 0) case

[Fig. 9(a)], the revival of the Kondo effect eventually occurs,

whereas in the case of AFM coupling (J < 0) [Fig. 9(b)],

the transport becomes almost completely suppressed. In order

to understand this effect, note first that for D/T ≪ 1 the

MQD effectively becomes spin isotropic. This is because

thermal excitations between neighboring spin states, allowing

for overcoming the energy barrier for spin reversal, enable

indirect transitions between the ground doublet states. Then, in

the FM case, similarly as for a system of two exchange-coupled

spin-1/2 impurities [64,69], the Kondo effect develops even

though the J coupling far surpasses the hybridization Ŵ, i.e.,

instead of stabilizing the high-spin state, the screening of the

OL’s spin is preferred [66].

In order to show that the Kondo effect should indeed be

observed in Fig. 9(a) for small values of D, in Fig. 10 we

present the temperature dependence of the linear conductance

GAP for D/T 0
K = 10−6. It can be seen that, unlike for the

spin-isotropic case (D = E = 0, dashed-dotted thin lines), the

appearance of the Kondo effect when lowering temperature

takes place stepwise. To understand this behavior one should

realize that finite magnetic anisotropy generally suppresses the

Kondo resonance. For large ferromagnetic J coupling, J >

T 0
K , as considered here, the actual Kondo temperature is much
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lower than T 0
K [66], such that even tiny values of D can affect

the low temperature behavior of the conductance. This can be

seen in Fig. 10 in the case of vanishing transverse anisotropy,

when the conductance is smaller than its maximum value of

GAP = (1 − P 2)2e2/h. Then, the finite transverse component

of magnetic anisotropy can indeed play an important role,

giving rise to full restoration of the Kondo effect, which occurs

as a step in the dependence of GAP on temperature.

For the AFM J coupling, on the other hand, the

suppression of the conductance is expected to arise due to

the inability of screening the MQD’s spin by conduction

electrons. In particular, since we assume |J | > T 0
K , at low

temperatures (T ≪ T 0
K) the MQD can be effectively viewed

as a single composite spin of value S t = S − 1/2 that couples

ferromagnetically to the conduction band [33], so that its

screening becomes impossible.

For the parallel magnetic configuration [see Figs. 9(c)

and 9(d)], an analogous dependence of conductance as

analyzed above can be observed for the OL energy ε = −U/2

corresponding to the particle-hole symmetry point of the

system. However, in the FM case for the considered range

of parameters, no unitary limit of the conductance is achieved.

A completely different D dependence of the conductance, on

the contrary, is seen for ε = −U/3. Here, G only slightly

changes for the AFM configuration in the range of values of

the uniaxial anisotropy parameter under consideration [open

points in Fig. 9(d)], while it remains practically constant for

the FM coupling [open points in Fig. 9(c)]. The origin of

the observed behavior can be relatively easy understood for

ε = −U/3, where due to the presence of the effective dipolar

exchange field the ground-state doublet is split, which leads

to the suppression of linear conductance, and for ε = −U/2

in the AFM case of the J coupling (see the above explanation

for the antiparallel magnetic configuration). On the other

hand, for ε = −U/2 and the FM J coupling one could

expect that in the absence of the dipolar exchange field, the

system should qualitatively behave somewhat similarly as for

the antiparallel magnetic configuration. Closer analysis of

the temperature dependence for GP [Fig. 10(a)], however,

indicates that no Kondo effect arises at low temperatures,

and GP takes a relatively low value, as compared to GAP,

in the temperature range of interest. This can be attributed

to the presence the effective quadrupolar exchange field,

recently predicted to occur in large-spin (S > 1/2) nanoscopic

systems [54]. A large-spin system subject to such a field

can acquire uniaxial magnetic anisotropy, even though it was

generically spin isotropic, and this effect is of pure spintronic

origin due to the proximity of ferromagnetic electrodes.

As stemming from higher-order tunneling processes, the

quadrupolar exchange field is proportional to Ŵ2, and its effect

is usually overpowered by the dipolar exchange field, which

is the first-order effect (∝Ŵ). Importantly, the quadrupolar

field does not vanish at the particle-hole symmetry point,

as the dipolar field does, where it can play an essential role

especially in the case of systems with no or small magnetic

anisotropy.

In the situation under consideration [see full points in

Fig. 9(c)], one can see that for D/T 0
K � 10−2 the con-

ductance takes a constant value, which for small intrinsic

magnetic anisotropy remains also independent of temperature

[Fig. 10(a)]. In the light of the preceding discussion, one can

thus conclude that the transport properties of the MQD in

such a case are determined by uniaxial magnetic anisotropy

of spintronic origin (i.e., due to the quadrupolar exchange

field), so that the effect typical for the situation of D ≫ TK

is observed. Finally, we note that similarly as the dipolar

exchange field, also the quadrupolar field is absent for the

antiparallel magnetic configuration of electrodes [54].

The corresponding dependence of the linear conductance

on D in both magnetic configurations is reflected in the TMR,

which is shown in Figs. 9(e) and 9(f). For ferromagnetic J and

ε = −U/2, the TMR first decreases to reach a local minimum,

then increases to drop again and reach negative value. For

ε = −U/3, the TMR is generally negative and depends rather

weakly on D. The dependence, however, changes completely

in the case of antiferromagnetic J . Now, the TMR becomes

greatly enhanced with decreasing D. This is related to the fact

that in the antiparallel configuration the conductance should

become fully suppressed in the limit T → 0 [34–36].

F. The effect of transverse magnetic field

A characteristic, experimentally observed, feature of a

nanomagnet with an effective large spin S, whose magnetic

properties can be described by the giant-spin Hamiltonian (3),

are oscillations of the tunnel splitting � of the ground state

as a function of a magnetic field applied along the system’s

hard anisotropy axis [17,70,71]. These oscillations are a

manifestation of the quantum-mechanical nature of the system

under discussion, as they stem from destructive interference

between different tunneling paths [72,73]. It was shown that

the degeneracy of the ground state is restored at some specific

values B (n)
x,res of the field, occurring at the same interval

�Bx = 2
√

2E(D + E) [74–77]. The index n ∈ N labels the

consecutive values of the field, different from zero, for which

� = 0, and as far as the ground-state splitting is considered n

cannot be larger than the spin number of the system [78].

Importantly, although here we limit our discussion to the

ground state and the field applied along the hard (x) axis,

generally the degeneracy restoration can take place between

any two, repelling each other, states and also for the specific

combinations of the field components along the hard and easy

(z) axes. Such a point of the parameter space where this takes

place is commonly referred to as a “diabolical” point [4].

Let us analyze such oscillations of the ground-state doublet

in the case of the system under consideration, that is, a

MQD in the Kondo regime. First and foremost, we recall that

the total spin S t of an MQD arises owing to the exchange

interaction between the spin of an electron occupying OL and

the magnetic core spin [cf. Hamiltonian (1)], and only the

latter is represented by the giant-spin Hamiltonian (3). For this

reason, since the system is now described by more parameters

than only the anisotropy constants D and E, one should not

generally expect that the degeneracy will be restored at the

constant interval �Bx .

For a half-integer spin, as considered in this paper, in the

absence of an external magnetic field (and also the effective

dipolar exchange field) the ground state is twofold degenerate

(� = 0) [see Figs. 11(e) and 11(f)]. Then, as discussed above,

if E 
= 0, at sufficiently low temperatures, T < TK, one expects
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FIG. 11. (Color online) (a)–(d) Similar to Fig. 5, but with the

linear conductance G at the particle-hole symmetry point (ε =
−U/2) plotted now as a function of magnetic field Bx (i.e., applied

parallel to the MQD’s hard axis) for several values of E/D and

T/T 0
K = 5 × 10−10. The indicated values of the Kondo temperature

TK correspond the case of E/D = 1/3, and has been derived from

the temperature dependence of conductance at respective fields where

the degeneracy of the ground-state doublet is restored. For specific

magnitudes of these fields see the right panel of Fig. 14. (Bottom

panel) [(e)and (f)] Oscillations of the ground-state doublet splitting

� due to the presence of transverse magnetic anisotropy for the

ferromagnetic (e) and antiferromagnetic (f) exchange interaction

parameter J , calculated for an isolated MQD. Remaining parameters

are as in Fig. 3.

the Kondo effect to arise [Figs. 11(a)–11(d)]. However, as soon

as the field along the hard axis is applied the doublet becomes

split (� 
= 0) and for Bx � TK the Kondo effect vanishes. Since

TK decreases as E/D gets smaller, one can easily see that

the detrimental influence of the field on the Kondo resonance

will be more pronounced for systems with weaker transverse

magnetic anisotropy, compare thin (small E/D) and bold

(large E/D) lines in Figs. 11(a)–11(d). Furthermore, as the

magnitude of the field is increased, whenever it approaches

one of its values B(n)
x,res corresponding to the restoration of

the degeneracy of the ground-state doublet, one observes that

the Kondo resonance builds up again. This process occurs in

the field range around B(n)
x,res whose energy scale is given by TK;

Figs. 11(a)–11(d). In agreement with theoretical predictions

about how many times the degeneracy can be reinstated [4],

for the FM J coupling (S t = 5/2) we observe two revivals of

the Kondo effect, whereas for the AFM J coupling (S t = 3/2)

only one. Also, as expected, the maxima of conductance do not

appear periodically. In addition, one can notice that whereas

Bx T Bx T

G
G

FIG. 12. (Color online) Temperature evolution of the Kondo res-

onance around the first resonant field B (1)
x,res (marked with arrows

in Fig. 11) in the case of the ferromagnetic (left column) and

antiferromagnetic (right column) exchange coupling for E/D = 1/3.

As in previous figures, also two magnetic configurations of electrodes

are considered: antiparallel (top panel) and parallel (bottom panel).

Except temperature T , all other parameters are the same as in Fig. 11.

for the FM exchange coupling the width of the resonance

becomes smaller for each next resonant field, the opposite

effect is observed in the AFM case; compare the bold lines in

Figs. 11(a)–11(d), representing E/D = 1/3, for which values

of TK at each resonant field have been provided. Since with

lowering E/D values of TK decrease (Fig. 8), this justifies an

extremely low value of temperature T used in calculations of

Figs. 11(a)–11(d), which was to ensure the occurrence of all

possible resonances for given ratios E/D. Finally, we note that

the conductance maxima in Figs. 11(a)–11(d) develop at some-

what different fields that one could expect from calculations

of the ground-state splitting � for an isolated MQD, shown in

Figs. 11(e) and 11(f). This can be attributed to renormalization

of energy levels due to strong tunnel-coupling which, in turn,

leads to renormalization of the anisotropy parameters D and

E [34,79], whose values determine the resonant field.

To get further insight into the properties of the Kondo effect

restored by means of the transverse magnetic field, we now

focus our attention on the peaks occurring for E/D = 1/3 at

the first resonant field B(1)
x,res, in the case of different magnetic

configurations and sign of the exchange interaction parameter

J . These peaks are indicated in Figs. 11(a)–11(d) with arrows.

First, in Fig. 12 we investigate the temperature evolution of the

conductance maximum developing at B(1)
x,res. It can be seen that,

as expected, with the increase of temperature the maximum

becomes gradually smeared out, and eventually the Kondo

effect no longer shows up. From the width of the peak at low

temperatures, that is, for which the peak has already reached

its maximal available value, we can qualitatively confirm that

in general the Kondo temperatures are lower for the parallel

magnetic configuration. Moreover, since now the field range

under consideration is limited to a vicinity of the resonant

field, one can immediately notice that for a given type of the J
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FIG. 13. (Color online) Analogous to Fig. 12, but now the de-

pendence of the field-induced restoration of the Kondo resonance

on the spin polarization coefficient P of the leads is analyzed for

T/T 0
K = 5 × 10−4. The inset presents the shift of the peak position

�Bres as a function of P in the parallel magnetic configuration,

measured with respect to the case of P = 0 (solid line). Remaining

parameters are as in Fig. 12.

coupling the exact values of B(1)
x,res differ for the antiparallel and

parallel magnetic configuration. In particular, in the parallel

case the maximum occurs at a slightly larger value of the field.

Because, as mentioned above, the value of B(n)
x,res depends on

the magnetic anisotropy, one can thus suspect this effect may

be related to the presence of the effective quadrupolar field

in the parallel configuration. Recall that we consider here the

system at the particle-hole symmetry point (ε = −U/2), so

the dipolar exchange field is absent.

The effective quadrupolar exchange field is a spintronic

effect, which means that its magnitude depends on the spin

polarization P and magnetic configuration of electrodes [54].

Particularly, it grows as P 2 and gets switched off in the

antiparallel configuration. For these reasons, in order to check

whether the shift of the conductance maximum originates from

the quadrupolar field, for a chosen temperature in Fig. 13 we

analyze how the position of the peak depends on P . We find

that while for the antiparallel magnetic configuration the peak,

albeit with a different height, always occurs at the same value

of the field, Figs. 13(a) and 13(b), in the parallel configuration

the maximum moves towards larger fields as P is increased

[Figs. 13(c) and 13(d)], and this effect is more pronounced for

the FM J coupling (see the inset in Fig. 13).

Another interesting feature visible in the dependence of

the linear conductance on the transverse magnetic field is

the asymmetry of restored Kondo resonances with respect

to the restoration field B(n)
x,res (see Figs. 11–13). This effect

results directly from the asymmetry of corresponding matrix

elements of the total spin relevant for the spin-flip exchange

processes, which are responsible for the occurrence of the

Kondo effect [41]. The asymmetry of matrix elements gives

rise to the corresponding behavior of the Kondo peak as a

function of Bx .

G. Universal scaling

Finally, we discuss the universal features of the Kondo

resonance restored by the presence of transverse magnetic

anisotropy. In particular, we analyze the normalized linear
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FIG. 14. (Color online) Universal features of the Kondo effect restored by the presence of transverse magnetic anisotropy at the particle-hole

symmetry point (ε = −U/2). (Left panel) [(a)–(d)] Analogous to Figs. 6(a)–6(d), but now the conductance is normalized to its value at T = 0,

whereas the temperature T is scaled with respect to the Kondo temperature TK for a given E (for specific values see the description of lines in

each plot; recall that T 0
K/W ≈ 0.002). (Right panel) [(e)–(h)] The scaling of conductance G for E/D = 1/3 [cf. bold lines in Figs. 11(a)–11(d)]

is shown for the values of magnetic field Bx at which the Kondo effect is restored. In both panels solid lines are added to facilitate the comparison

with the case of a single level quantum dot (QD), whereas long-dashed lines in the right panel allow for comparison with the case when the

magnetic field is absent (Bx = 0). All other parameters are as in Fig. 3.
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conductance G/G(T = 0) as a function of temperature scaled

with respect to the Kondo temperature. This allows us to

check whether the temperature dependence of the conductance

follows that observed for a conventional single-level quantum

dot. For this purpose, we first consider the case when an

external magnetic field is absent (Bx = 0); see the left panel

of Fig. 14. Distinct dashed lines correspond there to different

values of the transverse magnetic anisotropy parameter E,

while the solid line presents the temperature dependence of G

for the case of a single-level quantum dot (D = E = J = 0).

It should be emphasized that the Kondo temperature TK used

for rescaling the temperature axis actually varies for each line,

and its specific values are given in the figure. One can see that

regardless of the type of the exchange coupling the agreement

between the conventional spin-1/2 and the pseudospin-1/2

Kondo effect discussed in this paper is obtained for T/TK � 1.

In the case of T/TK > 1, for the FM J coupling the values of

conductance for the spin-anisotropic system can significantly

exceed those for the quantum dot [especially in the AP

magnetic configuration; see Fig. 14(a)], whereas in the AFM

case the universal behavior of conductance is found up to the

high temperature regime, T/TK > 1.

The above analysis can be extended to the situation of an

external magnetic field applied along the MQD’s hard axis.

In the right panel of Fig. 14 we show the dependence of

linear conductance on temperature in the case when the Kondo

effect arises owing to the field-induced oscillations of the

ground-state doublet splitting. In particular, the dashed lines

represent the temperature dependence of the conductance at the

maxima appearing at some resonant fields in Figs. 11(a)–11(d)

for E/D = 1/3 (bold lines). We find in this case the same

universal scaling properties of the Kondo effect as those

discussed above.

IV. CONCLUSIONS

In this paper we analyzed the linear response transport

properties of a large-spin molecule strongly coupled to external

ferromagnetic leads. The main focus was on the role the trans-

verse magnetic anisotropy plays in formation of the Kondo

effect. The considerations were performed with the aid

of the full density-matrix numerical renormalization group

method, which allowed us to obtain accurate results for the

studied system. In particular, we analyzed the dependence of

the spectral function on the orbital level position of the

molecule, the magnetic configuration of the device, and the

type of exchange coupling between the magnetic core of

the molecule and its orbital level.

We showed that an additional finite transverse component

of magnetic anisotropy has a profound effect on transport

characteristics of the system as it can generally lead to the

restoration of the Kondo resonance, with the Kondo tempera-

ture depending now on the transverse anisotropy constant E.

Whereas in the antiparallel configuration at sufficiently low

temperature the Kondo effect occurs as soon as the system

enters the local moment regime, −U < ε < 0, in the parallel

configuration the Kondo effect is restored only at the particle-

hole symmetry point (ε = −U/2), with considerably smaller

Kondo temperature. Such a behavior is due to the presence of

the effective dipolar exchange field in the parallel configuration

that splits the ground-state doublet and it vanishes only at

that specific symmetry point. In consequence, the influence

of the transverse magnetic anisotropy is most prominent at

ε = −U/2 and it manifests especially in the nonmonotonic

dependence of the tunnel magnetoresistance, which for E = 0

remains approximately constant. Furthermore, the interplay of

temperature and both the anisotropy parameters was explored

to establish the parameter space for which the Kondo effect

can take place.

Finally, we also investigated the response of the molecule

to an external magnetic field applied along the system’s hard

axis, expecting that the oscillations of the ground-state splitting

should translate into periodic reoccurrence of the Kondo

resonance. We found that, unlike for large-spin nanomagnets,

which can be described by the giant-spin Hamiltonian, the

resonant fields at which the degeneracy restoration takes place

do not appear at the same interval depending only on the

magnetic anisotropy parameters. Interestingly, we showed that

these fields hinge on the magnetic configuration of electrodes

and their spin polarization. In particular, at the particle-hole

symmetry point for the parallel magnetic configuration we

observed that with increasing the spin polarization the Kondo

resonances are reinstated at slightly larger fields as compared

to the antiparallel configuration, where no similar dependence

arises. We attribute this effect to the presence of the effective

quadrupolar exchange field, recently proposed to exist in

large-spin nanosystems [54].
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[52] M. Gaass, A. K. Hüttel, K. Kang, I. Weymann, J. von Delft, and

C. Strunk, Phys. Rev. Lett. 107, 176808 (2011).
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[61] O. Legeza, C. Moca, A. Tóth, I. Weymann, and G. Zaránd,

arXiv:0809.3143 (the open access Budapest code is available at

[http://www.phy.bme.hu/˜dmnrg]).
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