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Pressure dependence of the boson peak in glasses: Correlated and uncorrelated perturbations
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V. L. Gurevich

A. F. Ioffe Institute, Saint Petersburg 194021, Russia

(Received 6 September 2013; published 27 January 2014)

The pressure dependence of the boson peak in glasses within the framework of the extended soft potential model

is reconsidered, taking effects at small pressures into account. One of these is the pressure dependence of the

elastic constants, changing the interaction between the soft localized modes and thus changing the quasilocalized

vibrations (QLVs) of the boson peak. This and other effects require the introduction of additional parameters to

describe all the different influences of the pressure in detail. As in the first treatment of the problem, the dominating

high-pressure influence remains the creation of pressure forces, which have to be added to the random forces

responsible for the boson peak formation. The pressure forces consist of a correlated and an uncorrelated part

(correlated with respect to the already existing random forces). Both lead to the P 1/3 dependence observed in

high-pressure experiments, but the uncorrelated part vanishes at small pressure P . The comparison to experiment

is divided into a small pressure part, accessible through low-temperature heat capacity and thermal expansion

measurements, and the high-pressure part, mostly Raman scattering measurements of the boson peak under

pressure. The results suggest that the latter are dominated by the uncorrelated part of the forces, probably due to

pressure-induced relaxations.
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I. INTRODUCTION

One of the characteristic features of glasses is a maximum
of the inelastic scattering intensity at low frequencies, typically
in the interval of 0.5–2 THz [1] or that of the reduced specific
heat cp(T )/T 3. This maximum, the boson peak (BP), can be
traced to a maximum of the ratio g(ω)/ω2. Here, g(ω) is the
vibrational density of states (VDOS), which itself often has no
corresponding maximum. The BP originates from an excess of
low-frequency vibrations over the Debye contribution given by
the sound waves. Its origin is still disputed. The discussion is
confounded by the less than unique definition. Low-frequency
maxima in the inelastic scattering intensity are not confined
to glassy materials. They are also observed in crystalline
structures. This can be due to low lying optic modes or to some
acoustic branch being either particularly soft or flattening at
low frequencies or dipping at some q, e.g., as a precursor of a
martensitic phase transition [2]. In these cases, the maximum
is an intrinsic property of the crystalline lattice and disorder
merely broadens and shifts these maxima. The same holds
for low lying optic modes or librations of some molecules in
plastic crystals [3–5].

In our work, we are concerned with the case where the

BP originates from disorder and is not an intrinsic crystalline

effect, broadened by disorder. The importance of disorder for

the BP in glassy materials is emphasized by the Ioffe-Regel

crossover of the sound waves around the BP frequency ωb.

At long wavelengths, glasses support sound waves—they

are, in the continuum limit, isotropic elastic media. With

increasing frequency, the sound wave damping increases, the

free mean path decreases and drops to the wavelength size

(Ioffe-Regel limit) [6]. This may happen somewhere near ωb

(this point is discussed in detail in Ref. [7], section 6). The

vibrational states above this limit are no longer propagating

modes. Heat transfer, e.g., is more like a diffusive process.

The vibrational states have therefore been called diffusons [8].

For completeness, we want to mention that the Ioffe-Regel

limit need not be reached for both, longitudinal and transverse,

branches at the same frequency. It is even possible that it is not

reached at all by the longitudinal branch [9].

A major effort has been spent to describe the BP in terms of

random matrix theory for the dynamic matrix [10–12]. These

models concentrate on the randomness of the the vibrational

coupling constants, in the literature sometimes called elastic

constants, that form the dynamic matrix. This means that the

random second derivatives of the potential energy are assumed

without caring for the random first derivatives (forces) that

define the structure. A draw-back of this purely harmonic

approach is that some ad hoc restrictions are needed to prevent

instability, or otherwise some eigenvalues ω2 turn out to be

negative. In nature, stability is restored by the anharmonicity

of the atomic interaction. Recently, Beltukov and Parshin

presented an inherently stable random matrix model [13].

Since their model does not allow for sound waves, they added

an extra term that shifts the modes of the random matrix to

higher frequencies and adds sound waves in the gap at the

lowest frequencies.

A quite general description of the vibrations in glasses can

be given in terms of averaged vibrational Green’s functions.

The details of disorder effects are subsumed in a self-

energy, which is then suitably approximated. In the model

of fluctuating elasticity, this is done by concentrating on the

low-order terms in an expansion in q space [10,14–16].
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Another approach is to relate the structure of the BP vibra-

tions to vibrations of some crystalline counterpart [17,18].

Despite the crossing of the Ioffe-Regel limit near the BP

the vibrations are treated as phonons following a dispersion

curve. Disorder is assumed to broaden the lowest van-Hove

singularities and pull them down to lower frequencies. In

particular, this might be by a level repulsion mechanism.

In a similar spirit, a softening of the sound velocity at a

frequency corresponding to the BP has been invoked [19].

Defining a length scale by ℓ = 2πct/ωb, with ct the transverse

sound velocity, the boson peak is often related to a spatial

correlation [20,21]. However, whatever the origin of the BP, in

absence of symmetry, vibrations of similar frequency interact

and this correlation therefore does not necessarily indicate the

origin of the BP in a structure of size ℓ.

We assume that the BP can be described in terms of

quasilocalized vibrations (QLVs) [7,22,23]. The approach is

an extension of the soft potential model that successfully

describes the low-temperature, low-frequency limit of the

vibrational dynamics [24,25]. It generalized the earlier atomic

soft potential model [26,27] to more extended modes as seen

in experiment [28] and simulation [29]. QLVs occur when

positive and negative interatomic force constants almost cancel

for some directions in the 3N -dimensional space of vibrations.

Properties of QLVs, also called resonance modes, have been

studied extensively for defects, especially interstitial atoms,

in crystalline lattices, see, e.g., Refs. [30,31]. For QLVs to

be formed, it is not necessary that a single atom is loosely

bound to is neighbors, but a group of atoms can collectively

have a soft vibrational mode. In simulations, QLVs have

been observed while the Einstein spectra, i.e., the single atom

vibrations, showed no anomaly [29]. The atoms participating

in the QLV also participated in high-frequency modes. A QLV

has a material dependent structure, e.g., a coupled libration of

tetrahedra in SiO2 [28] or a chainlike (stringlike) motion in

close packed metallic structures [29]. It will always reflect

the relative weakness of the local structure of the given

substance against some collective motions of groups of atoms.

QLVs forming the BP explain the strong sound wave damping

observed in experiment [25,32]. Additionally, they explain the

nearly universal strength of the two-level systems in glasses [7]

as well as the qualitative difference of the diffusion in metallic

glasses compared to diffusion in crystals [33]. Our description

is in some aspects similar to the one of Klinger whose “soft

mode model” [34] also originates from the so-called atomic

soft potential model.

Our approach has a strong overlap with those other

approaches where the BP is an effect of strong disorder.

The harmonic eigenstates which ultimately form the BP are

all extended modes and as such they are the eigenmodes

of the “random” dynamic matrices. In the long-wavelength

limit, the model turns into the one of fluctuating elastic

constants [16,32]. For frequencies above the Ioffe-Regel limit,

the eigenmodes naturally become diffusons.

In our previous work [7,22], we showed that the interaction

of QLVs creates a BP. Due to the lack of symmetry, the

interaction between modes at similar frequency causes level

repulsion leading to the corresponding density of states

gexc(ω) ∝ ω and a dynamical matrix similar to the one gained

in the random matrix models. As in these models, the dynamic

matrix shows unstable modes. The underlying physical picture

of QLVs allows us to include anharmonicity that stabilizes

the system in a nearby configuration. The resulting modified

modes can be described in harmonic approximation. They

correspond to a “random” dynamic matrix that is restrained to

positive eigenvalues. The move from an atomic configuration

where some modes are unstable to a nearby minimum where

all modes are stable and all eigenvalues of the dynamic matrix

are positive, induces forces on all vibrational modes of the

original configuration that shift the lowest frequency modes

upwards. At low frequencies, the excess spectrum is changed

to gexc(ω) ∝ ω4 [24] and [27]. Together with the level repulsion

at higher frequencies the two effects give the BP a universal

shape. The BP is essentially described by only two parameters,

its position and height. Details, such as the extent of the

tail to high frequencies, are material dependent and beyond

the simple description. The description is restricted to low

frequencies where the specific features of the material, such

as peaks in the VDOS are not essential. The influence of

the high-frequency modes, though essential, is averaged out

and is only summarily included as effect of “high-frequency

oscillators.” We want to stress that as regards the BP, we treat

the vibrations as harmonic.

To gain more insight into the physics of the BP, it is essential

to study its dependence on the change of external parameters.

The purpose of the present paper is to extend our theory of

the boson-peak position ωb as a function of pressure P . A

theory predicting the ωb(P ) dependence has been worked out

by Parshin and two of the authors of the present paper [35]. This

theory dealt with the effect of the forces on the QLV, induced

by pressure. It predicted a blue shift δωb(P ) = ωb(P ) − ωb(0)

of the BP, sublinear at high pressures, having either the

form ωb(P ) = ωb(0) (1 + |P |/P0)1/3 or the form ωb(P ) =
ωb(0)[1 + (P/P0)2]1/6—depending on the distribution of the

random forces brought about by the pressure variation.

These predictions, as regards the high-pressure behavior,

were in agreement with previous experiments [36–38] and

were confirmed by subsequent experiments [39–43] and

simulation [44]. This work concentrated on the effects at high

pressures.

In the present work, we include additional smaller effects

of pressure, which are essential at low pressure, as seen,

e.g., in thermal volume expansion. A change of volume by

pressure changes the quadratic terms of the harmonic system

of QLV. Both the QLVs eigenfrequencies and their interaction

are affected.

Additionally, we correct one point in the theory developed

in Ref. [35], namely, the low-pressure behavior of the dom-

inating “uncorrelated” effect. This should always start with

a P 2 term rather than with a |P | term, which implies that

one does not see the dominating effect in the low-temperature

expansion.

In the following, we first recapitulate our model and show

the different mechanisms how pressure can affect the BP. In

a short excursion, we illustrate how a peak, which is not

caused by disorder, is changed by interaction with disorder

and finally merges into a “disorder” BP, the subject of the

present investigation.

The comparison to experiment shows that our results are

able to describe the low-temperature volume expansion of
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glasses, though admittedly with more parameters than one can

fix by the thermal expansion alone. This is demonstrated for

vitreous silica and a polymer. However, for those substances

where one has both low-temperature and high-pressure data,

the low-temperature effects are always too small to account

for the high-pressure behavior in terms of correlated forces.

We then discuss what these results and other measurements

indicate concerning reversible and irreversible effects and how

experiments could clarify this.

II. DENSITY OF STATES

A. The scheme

In this section, we introduce the basic equations and

notations that we will need in our analysis. Following

Refs. [22,24,35], we exploit the fact that there are low-

frequency quasilocalized vibrations (QLVs) in a glass. These

QLVs result from the interaction of soft localized modes

(SLM) with extended modes (sound waves). The harmonic

eigenstates are mixtures of these SLM and the extended modes

and are, therefore extended modes. Diagonalizing the dynamic

matrix one obtains these eigenmodes where the contribution

of the SLM is diluted and not easily observable. In computer

simulations, the SLM, in other words QLVs, are directly

observed for the lowest frequencies where due to the finite

number of atoms the long-wavelength sound waves of similar

frequency are cut off [29]. At somewhat higher frequencies,

the SLMs can be extracted from the harmonic eigenmodes by

a demixing procedure [45]. QLVs are not an artifact of small

system sizes. The system size merely determines whether they

appear as SLM or are mixed into many eigenmodes and then

are seen as low-frequency peaks in the VDOS of some atoms

or group of atoms [30,46].

Our description of the boson peak is derived from the

properties of the SLM, sometimes briefly called oscillators. As

a rule, in glasses, they comprise some ten or even several tens

of atoms taking part in a collective vibration. Due to disorder,

there will be a distribution of frequencies of such modes that

we assume to be smooth and sufficiently broad on the scale of

the BP frequency, see also Sec. III. Apart from the textbook

example of the heavy substitutional isotope defect, QLVs can

result from a weak coupling of an atom or group of atoms to

the bulk of the material, e.g., dangling bond modes in open

structures, or a weak coupling of some molecular libration.

In these cases, the soft-mode frequency directly relates to the

atomic coupling to the matrix, the mode frequency ωs ∝
√

fs ,

where fs is the coupling constant. These modes will couple

weakly to the sound waves. As outlined in Ref. [24], we

concentrate on modes resulting from the strong disorder typical

for glasses. Since the low frequencies of these modes result

from the partial cancellation of positive and negative atomic

force constants, small variations of the structure can cause

relatively large changes of the vibration frequency resulting

in a large spread. The SLMs couple strongly to the sound

waves [25]. We denote the spectral density of their squared

frequencies by g0(ω2). As in our earlier work [24,25], we

expand the potential energy of the single modes in powers of

the oscillation amplitude to fourth order from the minimum

position:

Ui(x) = U 0
i + Mω2

i x
2
i

/
2 + Bix

3
i

/
3 + Aix

4
i

/
4. (2.1)

These are the “soft potentials” for the modes. Whereas in

Refs. [24,25], the soft potential was written in terms of the

displacement of the central atom we use here the notation

of Ref. [22], where x stands for the oscillator amplitude.

In this notation, the displacement of atom n is given as

sn = xen with en the harmonic eigenvector of the soft mode.

This eigenvector refers to the subsystem of atoms that have

a large amplitude, typically ten to hundred atoms. It is not

an eigenvector of the total 3N -dimensional system. There is

some arbitrariness in the definition of the subsystem. However,

this does not affect the results. An increase in subsystem

size is compensated by a reduction in the interaction term.

When the subsystem becomes the total system, the interaction

between the SLM vanishes and the SLM-eigenvectors become

eigenvectors of the total harmonic system. The softness is

reflected in the second term of Eq. (2.1). In contrast the

anharmonic coefficients Ai are not small, e.g., for silica

Ai ≈ 1000 eV/(nm)4 [24]. This is a typical value of the fourth-

order anharmonic constant independent of the smallness of

the second-order term. We want to stress that x is a mode

coordinate and the translational invariance of the whole system

is therefore guaranteed by construction. We assume that due

to disorder, there is a broad distribution of frequencies ωi

down to low frequencies ωi → 0. Further down, we will briefly

discuss the case of a narrow frequency distribution. We have

shown previously [35] that the third-order contribution induces

a broadening of the the BP but does not shift it significantly.

In the following discussion, we will discard this contribution.

The interaction of the soft modes with the sound waves induces

an interaction between them. We will take this interaction to

be weak. (In the case of strongly interacting modes, these

would be combined to a pair of split modes with again a

weak interaction.) As in the previous papers, we describe the

bilinear interaction between modes i and j by an elastic dipole

interaction:

Uij (xi,xj ) = Iijxixj (2.2)

with

Iij = gijJ
/
r3
ij . (2.3)

Here, J is the interaction strength, rij is the distance between

the soft modes and gij varies in the interval [−1,1]. It accounts

for the relative orientations of the modes. In the continuum

limit, the effect of a defect on the surrounding lattice can be

described by the first moment of the forces exerted on the

surrounding atoms, the dipole (force) tensor

�ij =
∑

n

F n
i rn

j , (2.4)

where n denotes the neighbors of the defect, Fn is the forces

exerted by the defect, and rn is the connecting vector [47]. In

Ref. [25], we showed, in the context of sound-wave damping,

the relation between �ij and the deformation potentials �l and

�t . The interaction energy between two such defined dipoles

is in the continuum approximation

W ab = �a
ij�

b
kl∂j∂lGik(rab), (2.5)
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where ∂j denotes the space derivative and Gik(r) is the static

elastic Green’s function. In using the static Green’s function,

we neglect retardation effects. Since G decays ∝ 1/r the

interaction decays with 1/r3. The dipole tensors defined in

Eq. (2.4) contribute to the energy of the static equilibrium

configuration. The change with vibration determines the mode

interaction.

The elastic Green’s function Gik(r) depends only on

distance and sound velocities. For distances comparable to

the range of the interatomic interaction, i.e., several nearest-

neighbor distances, the interaction should more exactly be

written in terms of the interatomic Green’s function that is

given in terms of all vibrational modes of the glass, not just

the long-wavelength ones. This might be important when there

is a strong variation of the pressure induced frequency shifts of

the modes. For the present, we neglect this additional variation.

We denote the eigenvector of the soft mode σ by e
(σ )n
j

with n denoting the atoms and j standing for x,y,z direction.

The dipole tensor then changes in lowest order of the mode

amplitude x as

�
(σ )
ij = x(σ )

∑

n

F n
i e

(σ )n
j , (2.6)

where the sum is over the atoms involved in the soft mode, i.e.,

twenty to fifty atoms. Together with Eq. (2.5) this determines

the interaction term Iij between the modes. The interaction

strength depends on the distance and structure of the modes,

their relative orientations and on the average the elastic moduli.

The interaction between the modes strongly modifies the

low-frequency tail of the spectrum and gives rise to a universal

shape of the boson peak in the excess spectrum [22]. The

derivation is done in two steps. First, we solve the harmonic

problem of interacting modes. The interaction between soft

modes and the more numerous higher-frequency modes

strongly modifies the original spectrum for ω2 < ω2
c , where ωc

is the so-called limiting frequency, ω2
c being proportional to

the interaction strength J . The resulting frequency spectrum

(VDOS) at low frequencies is linear in ω due to the level

repulsion. It extends to negative eigenvalues ω2. At that

stage, our results are similar to the ones of random matrix

approximations.

In a second step, the system is stabilized by the anharmonic

terms in Eq. (2.1). Taking these terms into account the energy

curve for the unstable modes turns into a double well structure

with the mode origin at the maximum between the two wells.

Stability is restored by displacing the unstable modes into

the minima positions where the corresponding eigenvalues are

positive.

These displacements are of the order of an interatomic

distance. They induce additional dipole forces on all oscil-

lators. Again, the origins of the oscillator modes are slightly

shifted and the eigenvalues change due to the anharmonic

terms. Whereas for the higher-frequency modes, the frequency

shift is negligible the lowest-frequency modes are strongly

affected by a blue shift. The excess spectrum at low frequencies

goes as gexc(ω) ∝ ω4, which was found earlier in the soft

potential model [24] and is called the seagull singularity. (It is

a singularity in the distribution of the stiffness constants of the

SLMs in the soft potential model.) It forms the low-frequency

flank of the BP. We want to stress again that anharmonicity is

an essential ingredient in defining the structure. However, the

resulting BP vibrations are harmonic.

We have shown previously that the forces f , acting on the

soft modes, have an approximately Lorentzian distribution of

width δf :

Q(f ) =
1

π

δf

f 2 + δf 2
. (2.7)

This force distribution is strictly valid for a random distribution

of dipoles. The BP frequency is then [7]

ωb =
√

3A1/6(δf )1/3M−1/2, (2.8)

where M and A are the characteristic mass of the oscillators

and the fourth-order anharmonicity coefficient, respectively.

The power 1/3 is associated with the fact that it is the fourth-

order anharmonicity that stabilizes the system. The pressure

dependence of δf was found to be the main contributor to the

shift of ωb at high pressures [7].

B. Pressure effects

1. General considerations

Under an applied external pressure P , the glass will be

strained on average by

ǫαβ = −(P/3K)δαβ = ǫδαβ , (2.9)

where K is the compression modulus. On average all distances

between atoms will be changed as

dij (ǫ) = dij (0)(1 + ǫ). (2.10)

Due to disorder in a glass, the displacements will fluctuate.

The average displacement is often referred to as affine and the

deviations from the average are then separated into random

fluctuations around the average and a strongly nonaffine

part [48]. Affine and nonaffine distortions are already seen

in diatomic crystals without inversion symmetry. There the

affine distortion refers to the distortion of the unit cell and

the nonaffine one reflects the relative displacement of the two

atomic species. Random fluctuations are, of course, absent in

such a system. The nonaffine displacements are related to the

optical modes. Strong nonaffine displacements are observed

also for defects in crystals, e.g., self-interstitials in fcc metals

where they are related to QLVs of the interstitial atoms [31]. We

believe that the nonaffine displacements in glasses are related

to the BP, i.e., the soft modes. Due to the large effective mass

of the SLMs [24], they are correlated over some length. The

random fluctuations, on the other hand, vary on an atomic scale

and we will treat them as uncorrelated to the soft modes. The

change of the parameters of the expansion (2.1) and (2.2) is

twofold. The parameters will on average both be shifted with

strain ǫ and gain additional fluctuating contributions:

ω2
i → ω2

i + δω2
i ǫ +

(
δω2

i − δω2
i

)
ǫ, (2.11)

Ai → Ai + δAiǫ + (δAi − δAi)ǫ, (2.12)

Iij → Iij + δIijǫ + (δIij − δIij )ǫ. (2.13)
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Here, the bar denotes averaging over soft modes within

some frequency interval 
ω much smaller than the average

eigenfrequency of the QLVs.

In our model, the shape of the excess intensity is not

changed markedly by pressure. The change of strength of

the low-frequency ω4 contribution shifts the position of the

maximum, the boson-peak frequency ωb, and concomitantly

the intensity gexc(ωb) varies. Modes shifted from/into the

low-frequency part are compensated in the high-frequency

tail of the BP (ωb < ω < ωc). For low pressure, in linear

approximation, the pressure effect can be expressed in terms

of two effective Grüneisen constants:

ωb(P ) = ωb(0)(1 + ŴbP/K), (2.14)

gexc(ωb,p) = gexc(0)(1 + ŴgP/K). (2.15)

In the following, we show how both affine and nonaffine

distortions contribute to the two parameters. Increasing the

pressure, we believe that eventually the nonaffine effects will

dominate. These lead to the asymptotic pressure dependence

with P 1/3 discussed in the previous work [35]. We show

that the main contribution is from two effects, which we

denote as correlated and uncorrelated. For positive pressures,

the two contributions are additive (provided the signs of

the coefficients describing their pressure dependence are the

same), whereas for negative pressures their difference enters.

2. Affine effects

A special case and the most straightforward assumption

would be that all modes comprising the BP shift by a common

factor ω(P ) = ω(P = 0)(1 + γGP/K). The BP frequency

then changes with the same factor:

ωb(P ) ≈ ωb(0)(1 + γGP/K), (2.16)

and the excess intensity at the BP changes, due to the stretching

of the VDOS and the denominator ω2
b, with the third power:

gexc(ωb,P )

ω2
b(P )

=
gexc(ωb,P = 0)

ω2
b(p = 0)

1

(1 + γGP/K)3
. (2.17)

Here, γG is the average mode Grüneisen constant, defined as

γG = −d(ln ω)/d(ln V ).

Assuming further that the Grüneisen constant of the

excess modes equals the one of the sound waves, one gets

gexc(ω,P )/gDebye(P ) = const for ω � ωb. This simple case is

given if all interatomic interactions scale with a common single

parameter. For a purely repulsive soft sphere interaction 1/rn,

this case was treated recently [49]. The resulting scaling laws

reflect then the scaling of energy with distance. As the authors

state, in nature, this might apply to systems under extremely

high pressure when the physics is determined fully by the

nearest-neighbor repulsion and the attractive interaction has a

negligible contribution. This special case is outside the scope

of the present work.

Equations (2.1) to (2.3) determine the BP essentially by the

spectrum of noninteracting soft modes ωi and their interaction

Iij . The frequencies ωi are determined by local configurations

of atoms causing near instabilities. The strength of the

interaction, on the other hand, depends not only on the local

geometries but also on the average elastic coefficients of the

glass matrix. Our description in terms of QLVs thus provides a

richer scenario. Two “partial Grüneisen parameters” emerge in

our theory: one describes the shift of the noninteracting local

modes

ωi(P ) = ωi(P = 0)(1 + γωP/K) (2.18)

and a second one the change of the interaction strength

I (P ) = I (P = 0)(1 + γJ P/K)2 ≈ I (P = 0)(1 + 2γJ P/K).

(2.19)

Here, we introduced the factor (1 + γJ P/K)2 because it refers

to an energy term instead of a frequency term. A change

of the fourth-order term Eq. (2.1) with pressure changes ωb

only negligibly. Not too large changes of the third-order term

slightly broaden the BP excess density of states [22,35].

The shift of the BP frequency when the interaction strength

changes, whereas the frequencies ωi , of the noninteracting

modes are kept constant, was given earlier [22] as

ωb(P ) = ωb(0)(1 + γJ P/K)2+2n/3. (2.20)

Here, n denotes the slope of log g(ω) in the vicinity of

the limiting frequency ωc below which the interaction will

create unstable modes. To keep in line with the definition of

the Grüneisen parameter, we write here, different from the

previous reference, the change of the interaction strength J

quadratic in γJ . In general, the interaction term changes with

pressure both due to a change of stiffness of the glass and

the reduction of the distances between soft mode centers. If

the variation of the mode Grüneisen parameters of the modes

responsible for the interaction is not too large, one can write

approximately

γJ ≈ 0.5 − γD. (2.21)

Here, the first term reflects the increase of the interaction when

the distances between the modes change due to a volume

reduction by pressure. The second term accounts for the

reduced interaction when the elastic moduli increase, Eq. (2.3).

The interaction strength J is inversely proportional to an elastic

modulus. We show further down that this approximation can

be used in the cases of polymethylmethacrylate (PMMA) and

silica.

In the opposite case, γJ = 0, we get from Ref. [22] Eq. (26):

ωb(P ) = ωb(0)(1 + γω P/K)−1−2n/3. (2.22)

Surprisingly, keeping the interaction constant, hardening of

the noninteracting soft modes with pressure is concomitant

with a softening of the BP frequency ωb. The reason for this

is that hardening of the noninteracting soft modes reduces the

number of modes that are sufficiently affected by the mode-

mode interaction to form a BP (the equation assumes the same

γω for all modes participating in the creation of the boson peak,

in particular, those which are instable and get stabilized by the

fourth-order term).

Combining the two terms, the shift of the BP in this

approximation becomes

ωb(P ) = ωb(0)(1 + γJ P/K)2+2n/3/(1 + γω P/K)1+2n/3.

(2.23)
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FIG. 1. (Color online) Shift of the BP frequency for different

Grüneisen constants for a typical value n = 1. Solid red line:

γJ = γω = γ , dashed blue line: γJ = 0, γω = 0.5γ , green dotted

line: γJ = 0.5γ , γω = 0, and black dash-dotted line: γJ = γ ,

γω = 1.6γ .

In the case γJ = γω, this reduces to the simple result Eq. (2.16).

In the general case, the BP frequency can, depending on the

strengths of γJ and γω, with pressure increase or decrease or

even go through a minimum. Figure 1 depicts this variation for

different scenarios. The approximate shape of the BP excess

DOS {Eq. (27) in Ref. [22]} can be used to estimate the change

of the VDOS at the BP:

gexc(ωb,P ) = g (ωb,P = 0)
(1 + γJ P/K)8n/3

(1 + γω P/K)1+8n/3
. (2.24)

Again, one sees the competing effects of the two variations.

For the simple case γJ = γω, the BP intensity decreases with

(1 + γ P/K)−3, whereas, in general, the intensity depends on

the underlying atomic mechanism both through the ratio γJ /γω

and the DOS of the noninteracting modes, in our simplified

description the value n.

For the above estimates, the VDOS of the BP was

approximated by ω4 and ω dependencies below and above ωb,

respectively. More exact values can be obtained numerically.

In Fig. 2, we show, for the case γω = 0 how the BP intensity
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FIG. 2. (Color online) Dependence of the BP intensity on the

BP frequency under a change of the interaction strength. Symbols:

numeric calculation, black line: least square fit, and green line:

α = 2 − 0.75n.

changes with the shift of the BP. It can be described by a simple

dependency

I (ωb) = I0ωb
−2+0.75n. (2.25)

The decrease with increasing ωb is always less than the

ω−3
b found for the simple overall Grüneisen scaling. The

effective logarithmic slope n of the DOS of the noninteracting

modes is a parameter in our general description. Hopefully,

experiments on systems where the atomistics is understood

will provide some information in future. To verify the analytic

results, we repeated the previous numerical simulation of our

equations [22] for different values of n. The simulations were

done for samples of 2197 oscillators placed on a simple cubic

lattice with periodic boundary conditions. The interaction

was changed by varying J . The lattice parameter was kept

constant, the gi,j were random numbers from the interval

[−1,1], independent of J . The anharmonicity parameters were

kept constant, Bi = 0 and Ai = 1. Within numerical accuracy

we did not see a deviation from the analytic results.

Little is known about n, which mimics the frequency

dependence of the VDOS of the noninteracting soft modes.

It will probably be not too far from n = 1 or n = 2, which

we shall assume for the fits to experiment further down. This

leaves then again two parameters. If Eq. (2.21) holds, one is

left with a single parameter. We will show further down that

the reduction to a single parameter suffices to reproduce the

experimentally observed low-temperature thermal expansion

of vitreous SiO2 and PMMA.

3. Nonaffine effects: uncorrelated forces

In our previous work, we have dealt with the shift of the

BP due to forces induced by pressure. This shift is additional

to the one treated above. We begin with a discussion of the

uncorrelated part of the QLV-strain interaction. Not repeating

the derivation of Ref. [35], we will discuss some of its crucial

points. The interaction between the strain and a soft oscillator

is bilinear:

Hint =
∑

i,k

�ikεikx, (2.26)

where �ik is the deformation potential tensor and x is the

coordinate of the QLV. As we have shown in our earlier work,

the interaction between the soft modes and the subsequent

stabilization introduces random forces f on the modes [7,22].

The deformation by pressure adds additional forces 
f [35].

The total random force f̃ has then two contributions

f̃ = f + 
f. (2.27)

To find the correlation function of the static random forces

acting on the QLVs, one should sum over all the neighboring

two-well configurations. The random force Eq. (2.27) is linear

in the deformation potential � and can be expressed via its

angular average components

�xx = �yy = �zz ≡ 1
3
�. (2.28)

If the distribution of the random forces at P = 0 is Q(f ),

then the distribution of the total random force f̃ at some
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pressure P is given by the convolution

FP (f̃ ) =
∫ ∞

−∞
Q

(
f̃ −

P

3K
�̄

)
D(�̄)d�̄. (2.29)

Here, Q(f ), given by Eq. (2.7), is the distribution of random

forces in the absence of pressure—see Ref. [22]—while D(�̄)

is the distribution of the values of the deformation potential

averaged over the “directions” of the QLVs.

As reported earlier, the shift of the BP by the additional

forces for large pressures is given by

ωb(P ) = ωb(0)(1 + |P |/P0)1/3 for |P | � P0, (2.30)

where P0 is a material dependent parameter. It can be expressed

approximately in terms of the bulk modulus and the deforma-

tion potential as P0 = 3Kf0/�0 [35] where all quantities refer

to the P = 0 state and f0 is a material parameter. Since changes

of the bulk modulus and the deformation potential with

increasing pressure largely cancel, Eq. (2.30) can remain valid

for materials with marked hardening under pressure. This has

been observed in experiment [40]. The extra forces enhance the

strength of the seagull singularity—the low-frequency ω4 flank

is extended to higher frequencies. The total number of SLM is

not markedly changed. Consequently, the excess intensity at

the BP changes to

gexc(ωb,P )/ωb(P )2 ∝ ωb(P )−1. (2.31)

Such a dependence has been observed by Andrikopoulos

et al. [39] in As2S3 at room temperature.

Though the experiment seems to corroborate Eq. (2.30)

even down to low pressure, one can show that in the low-

pressure limit the approximation must break down. For small

values of P (P ≪ P0), one can expand Eq. (2.29) and get [as∫ ∞
−∞ d�D(�) = 1]

FP (f̃ ) = Q(f̃ ) +
1

2
Q′′(f̃ )

∫ ∞

−∞
d�D(�)�2

(
P

3K

)2

,

(2.32)

where the linear term vanishes since D(�) is an even function

of �. This vanishing of the linear term was also seen in the

simulation of our model, see Fig. 4 in Ref. [35]. The pressure-

induced additional forces, which are uncorrelated to the forces

creating the BP thus do not contribute to the low-temperature

expansion, which we discuss further down in this paper.

The approach is based on two assumptions. First, we assume

that there is no correlation between the functions Q(f ) and

D(�̄). Indeed, the random forces f are due to the action of

neighboring two-well configurations on a particular QLV. They

depend not only on the deformation potential of the QLV but

also on deformation potentials of the two-well configurations.

This is a random quantity. The second assumption is that

the pressure does not induce a transition to a different glass

structure. The latter assumption does not preclude a limited

number of local configurational changes taking the glass to

some configuration which is metastable at P = 0. Reversibility

then depends on temperature.

In this reasoning, one point is left out, namely, the special

role of the “initial” pressure P = 0. We have implied that the

glass is grown out of a melt (in other words, quenched) at

P = 0. Had it been grown at some external pressure P1 the

situation would have been more involved as a “memory” of

P1 would be preserved within the glass. It is worthwhile to

note that the same situation could emerge provided the glass

is grown, for instance, in an external dc electric field E. The

“equilibrium” state of the glass after cooling down would then

be characterized by the vector E.

4. Nonaffine effects: correlated forces

Leonforte et al. [48] report for a Lennard-Jones glass

nonaffine displacements with correlation lengths of some 20

nearest-neighbor distances. These nonaffine regions correlate

with the excess BP modes. This finding can be understood from

the properties of QLVs. As shown in Ref. [24] the soft modes

extend over 20 to 100 atoms or molecular units. Furthermore

the soft modes tend to cluster. Particularly large nonaffine

displacements occur in the presence of soft (quasi) localized

modes. This can easily be understood considering that in an

harmonic system the static response function of an eigenmode

to an external force, fn can be written as

g
(σ )nn′

ij =
e

(σ )n
i e

(σ )n′

j

mσω(σ )2
, (2.33)

which means the displacement of an atom participating in

a mode is the larger the more localized the mode and the

lower its frequency. This effect is well known in the physics of

crystalline defects, e.g., interstitial atoms in fcc metals [31].

Large nonaffine displacements indicate a strong coupling

of some modes to strain. This will lead to changes of both

the frequencies ωi of the noninteracting modes and of their

interaction. They will be more pronounced the lower the

frequency. The sign and magnitude of this change will depend

on the type of glass. A much larger effect is expected from the

change of forces. We have seen above that the static forces due

to the stabilization of the modes, i.e., the change of the origin

in a double well potential, create the sea-gull singularity and

are responsible for the BP.

Strain induces an additional dipolar effect �ind
ij , which can

be written in terms of a polarizability matrix

�ind
ij =

∑

kl

αijklǫkl, (2.34)

where αijkl is the (dielastic) elastic polarizability [31]. For a

given defect concentration, this polarizability reduces also the

average elastic moduli


Cijkl = −
c

va

αijkl . (2.35)

The polarizability of a low-frequency QLV can be quite

large. For an order of magnitude estimate, we take the

polarizability of an interstitial defect in crystalline Cu [50]:


�

µ
≈ 100 eV, (2.36)

where µ is the distortion strength. The above value depends

strongly on the local geometry of the distortion and there might

be a large variation between different materials. For a pressure

of P = 1 GPa and the bulk modulus of Cu B = 140 GPa, this

gives an estimate of 
�ij ≈ δij (−0.4 eV). This is comparable

to the typical values around 1 eV for the active parts of the
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dipole tensor [25]. We have to remember, however, that the

mode interaction is not determined by the total dipole tensor

but only by the part that couples to the given mode. This can,

depending on the structure of the glass, reduce the effect of a

given strain.

We can now consider the shift of δf due to pressure. Making

use of the equation (see Ref. [7])

δf = D

(
M3

A

)1/2

ω3
c

(
ωc

ω0

)n

, (2.37)

one can write for the variation of 
(δf ) with pressure


(δf ) =
[
−

1

2


A

A
+ (3 + n)


ωc

ωc

− n

ω0

ω0

]
δf, (2.38)

where D is a constant of order of unity and ω0 is a limiting

frequency, typically about the Debye frequency. We will

consider such pressures that the strain |ǫ| ≪ 1. Then in the first

approximation, assuming that A, ωc, and ω0 are continuous

functions of strain, one can write for the variation of these

quantities under pressure:


A

A
= γAǫ,


ωc

ωc

= γcǫ,

ω0

ω0

= γ0ǫ, (2.39)

where γA, γc,and γ0, are dimensionless constants. Their abso-

lute values are of order of (or a little bigger than) unity. As a

result, one gets


(δf ) = γ ǫ, where γ = −γA/2 + (3 + n)γc − nγ0.

(2.40)

Due to polarization, the forces exerted by the two-well

configurations will thus be multiplied on average by a factor

(1 + αcorrP ), so that

f̃ (P ) = f (1 + αcorrP ), (2.41)

where αcorr = −γ /K. Consequently, the width of the force

distribution will be multiplied by the same factor and, only

taking this effect into account, the BP frequency shifts as

ωb(P ) = ωb(0)(1 + αcorrP )1/3. (2.42)

For αcorr > 0 and positive pressures, this corresponds to our

earlier result but shows an inverse effect for negative pressures

(or positive pressures and αcorr < 0).

Together with Eq. (2.30), the total shift due to the correlated

and uncorrelated forces is for high pressures,

ωb(P ) = ωb(0)
(√

1 + α2
uncorrP

2 + αcorrP
)1/3

. (2.43)

Writing
√

1 + α2
uncorrP

2 interpolates the pressure dependence

for intermediate pressures and is exact (analytical) for the

limiting cases of low and high pressures. There is no

quantitative theory for intermediate pressures as one does not

know the random properties of the deformation potential. In

the low-pressure limit, the correlated contribution vanishes

linearly unlike the uncorrelated effect. In contrast to this, the

correlated contribution persists and thus contributes to the

thermal expansion, discussed below. Setting αcorr + αuncorr =

1/P0, the form of our previous result may be regained for

|P | ≫ P0.

5. Relaxations and permanent densification

So far, we have dealt with changes of the VDOS not involv-

ing relaxations, the diaelastic effects. Double well potentials

are, however, tantamount to the existence of paraelastic effects.

Under an applied external pressure, the equilibrium occupation

probability of the minima changes. Equilibrium is restored by

relaxations over the separating barrier. These local changes

will induce additional forces on all soft modes and will give

an additive contribution to αuncorr.

Above the tunneling regime, relaxation is a phonon acti-

vated process with a temperature dependent time constant. In

a glass, one expects a continuum of such relaxation times. At

finite temperatures, transitions between the minima of some

two well systems with a comparatively low barrier will be rapid

and merge with the diaelastic contribution. However, there is

an increasing number of relaxations with higher and higher

barriers, ending only at the effective barrier height of the flow

process of about 30 kTg , where Tg is the glass temperature. So

one has to reckon with a large number of possible relaxations

with barriers of the order of 1 eV.

While usually these very high barriers play no role in

the glass, the situation changes at high pressures, where one

changes the volume of the glass by a sizable percentage. It

is to be expected that the coupling constant of these high

barriers to the external compression is markedly higher than

the coupling constant of the low-barrier tunneling states, which

is known to be of the order of 1 eV. Consequently, some of the

high barriers are lowered to half their low-pressure value or

even less by the high pressure and can be jumped over at the

lower temperature. Taking the pressure away again, the sample

can remain in a minimum with a smaller volume, which was

not accessible at low pressure, and thus remain permanently

densified. The permanent densification is the compression

counterpart of the plastic deformation under a large shear.

Since the local density change is much larger than the overall

one, the densification is still a sum of relatively few local

processes, which leaves the rest of the sample essentially the

same, though in a slightly more strained state. Again, such a

local change will induce additional forces on all soft modes

and will give an additive contribution to αuncorr in the densified

sample. In the comparison to experiment, we will discuss the

example of densified silica.

III. OTHER BOSON PEAKS

There is no generally accepted definition of boson peak.

The boson peak, we discussed so far, we will briefly call

soft potential BP, the corresponding physics is put forward in

detail in our papers [7,22]. As mentioned in the introduction,

low-frequency maxima of the scattering intensity can have

many different origins. We consider a broad distribution of

soft modes that are caused by disorder. The structure of these

soft modes might well resemble fragments of a low-frequency

optical mode, as argued, e.g., for vitreous silica [3]. The

situation is different for soft modes such as librating molecules

in plastic crystals [4,5]. These modes will have a well-defined
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frequency that is broadened by disorder. Such a peak might

show a different behavior depending on broadening and

interaction. For weak interaction, the pressure effect on these

modes is dominated by their local structure. For sufficiently

strong interaction, these modes will behave as discussed in

this paper. To simulate this schematically, we used again the

simulation scheme of our previous work [22]. The spectrum

of the noninteracting modes consisted of two parts. 95% of the

modes were distributed according to g0(ω) = 1.9(ω − 0.25)

for 0.25 < ω < 1.25 and zero otherwise. To this, we added

a narrow Gaussian distribution of modes amounting to 5%

centered at ω = 0.25 with variance 0.01. With this distribution,

we solved numerically the equations (2.1) with the interaction

term (2.2). For simplicity, we set Bi = 0 and Ai = 1. The

simulation was done for samples of 2197 oscillators, placed

on a simple cubic lattice with periodic boundary conditions.

Disorder was simulated by varying gij randomly in the interval

[−1,1]. For each coupling strength, at least 25 000 samples

were calculated. The effect of a change of the coupling strength

J , Eq. (2.3), is shown in Fig. 3. For not too large couplings

(J < 0.10), as to be expected, the Gaussian line broadens

and shifts to slightly lower frequencies. More interesting

is the evolution of a shoulder on the low-frequency flank

(J = 0.07) that evolves for J = 0.10 into a secondary peak.

This secondary peak is the “boson peak” discussed in our work.

Increasing the coupling even more, the two peaks merge and

for J = 0.20 only a single boson peak remains.To illustrate this

anomalous behavior, we show in Fig. 4 the shift of the intensity

peaks against coupling. Increasing J , we observe a weak red

shift of the Gaussian peak. In contrast, the (disorder-)boson

peak shows the blue shift expected from our work. The theory

presented in this paper is valid only for the lower branch.

It describes the shift of the low-frequency peak caused by

disorder. To accurately describe the shift of the original peak,

upper line in Fig. 4, the model would have to be extended to

include the shape of the original peak. Note that Figs. 3 and 4

were calculated under the assumption the frequencies of the

noninteracting modes do not change under pressure, γω = 0.
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FIG. 3. (Color online) Excess mode density for a Gaussian distri-

bution of modes coupled to a small density of modes with frequencies

ω < 0.25. The coupling strength between modes (2.3) is varied from

J = 0.03 to 0.30. The decay of the intensity of the Gaussian peak

near ω = 0.25 follows the increase of the coupling strength J .
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FIG. 4. (Color online) Evolution of the maxima of the reduced

excess VDOS, Fig. 3, as a function of coupling strength (red dashed

line: Gaussian modes, and black solid line: disorder).

IV. COMPARISON TO EXPERIMENT

A. Thermal volume expansion

One of the questions raised in the present paper is whether

our model, which is able to explain the measured high-pressure

boson-peak shifts, is also able to explain the boson-peak shift

at low pressure. In order to answer this question, one needs an

accurate determination of the boson-peak shift at low pressure.

Such an accurate determination of the low-pressure boson-

peak shift is possible using the heat capacity per unit volume

cP (T ) and the thermal volume expansion α(T ) of the glass

at low temperature. In the heat capacity, the boson peak is

manifest as a maximum in cP /T 3 at a temperature Tmax of

about 5 to 10 K. One can define a temperature-dependent

Grüneisen parameter Ŵ(T ) by the Grüneisen relation

Ŵ(T ) =
α(T )K

cV (T )
(4.1)

[note that at these low temperatures, the heat capacities cP (T )

and cV (T ) are practically identical].

In the simplest possible approximation, one can identify

the Grüneisen parameter Ŵb of the boson-peak frequency with

Ŵ(Tmax):

Ŵ(Tmax) = Ŵb =
∂ ln ωb

∂ ln V
. (4.2)

This approximation holds if all modes in the neighborhood

of the boson peak have the same Grüneisen parameter. In

experiment, this can be immediately seen by an essentially

constant Ŵ(T ) in the region around Tmax. We will later

discuss an example (PMMA) showing this behavior. It can be

recognized experimentally already by the peak in α(T )/T 3,

which for a mode-independent Grüneisen parameter appears

at the same Tmax as the peak in cP /T 3. In such a case, the

intensity g(ωb)/ω2
b changes with 1/ω3

b, as discussed in the

context of Eq. (2.16).

If the Grüneisen parameter is not the same for all modes in

the boson-peak region, the low-temperature thermal volume

expansion coefficient α(T ) is obtained by a sum over all low-

frequency modes. The resulting Grüneisen parameter Ŵ(T )

can be written in terms of the Grüneisen constants Ŵi of the
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single modes as [51]

Ŵ(T ) =
∑

i ŴiciV (T )∑
i ciV (T )

, (4.3)

where the sum is over all vibrational modes and ciV (T )

is the contribution of mode i to the heat capacity at the

temperature T :

ciV (T ) = k

(
�ωi

2kT

)2 /
sinh2(�ωi/2kT ) (4.4)

with k the Boltzmann constant. Depending on the material,

there can be a considerable variation in the Ŵi values. They

can even vary in sign. In our examples, vitreous silica will

turn out to be a case where the peak in α(T )/T 3 is markedly

shifted with respect to Tmax, so one needs to take the frequency

variation of the Grüneisen parameter explicitly into account.

This implies a scaling of g(ωb)/ω2
b with ω−a

b , where a is not

equal to 3.

Having determined the correct Grüneisen parameter Ŵb,

the initial slope of the pressure dependence of the boson-peak

frequency ωb is given by Eq. (2.15) as limP→0(∂ωb/∂P ) =
Ŵbωb/K , where K is the compression modulus of the glass at

zero pressure.

In the present paper, we will take two approaches to describe

the thermal expansion in the temperature region corresponding

to the boson-peak frequency. The first is to assume a linear

variation of the Grüneisen parameter at the boson peak with

increasing frequency. This is a two-parameter fit that requires

Ŵ(ωb) (which not necessarily equals Ŵb, see the fit of vitreous

silica) as one parameter and the slope of the Grüneisen

parameter at ωb as the second, see Eq. (2.15).

The second possible fit is to take our model, in which all

temperature shift of the excess modes is described by the four

parameters n, γJ , γω, and αcorr, too many parameters to be

fitted to the data. However, the knowledge of both Ŵ(ωb) and

the slope ∂Ŵ(ω)/∂ω at ωb allows to calculate the scaling of

g(ωb)/ω2
b with ωb. Thus one can determine n from Eq. (2.25),

use the approximate form of Eq. (2.21) for γJ and fit only γω.

This is a compromise because αcorr is set to zero without

any justification. Nevertheless, such a fit is useful, because

it links the measurements to the physical mechanisms of the

boson peak. It will at least give some indication of the relative

magnitudes of the different contributions discussed above.

1. Vitreous silica

The first example is vitreous silica. The upper part, Fig. 5(a),

compares three measurements [52–54] to the heat capacity

determined from the inelastic neutron scattering spectrum [54]

at 51 K, to show that there is agreement within experimental

error. Having asserted this, one can take the measured vibra-

tional spectrum g(ω) and fit the measured thermal expansion in

Fig. 5(b) with an appropriate Grüneisen parameter. Since the

thermal expansion is negative, one needs a negative Grüneisen

parameter. This shows immediately that the proportionality

of the boson-peak frequency to (1 + P/P0)1/3 valid at high

pressures does not work at small pressures, because it

predicts a positive Grüneisen parameter. This excludes the

possibility that the BP shift is fully determined by the nonaffine

uncorrelated force effects.

(a)

(b)

FIG. 5. Low-temperature thermal properties of vitreous silica.

(Top) Heat capacity cp per unit volume, plotted as cp/T 3, where T is

the temperature. Measured data [52–54] are in reasonable agreement

with the heat capacity calculated from the vibrational density of states

measured by inelastic neutron scattering [54] at 51 K. (Bottom)

The volume thermal expansion α, plotted as α/T 3. The measured

data [55–58] are fitted in terms of the neutron spectrum at 51 K,

attributing a Grüneisen parameter Ŵ(ω) = −4.4 + 1.2(�ω − �ωb) to

the vibrations around the boson-peak frequency �ωb = 4 meV.

One sees in Fig. 5, top that the peak in α/T 3 is shifted to

lower frequency with respect to the peak in cp/T 3. This shows

that the Grüneisen constants of the modes vary. We introduce

a frequency-dependent Grüneisen parameter Ŵ(ω) of the form

Ŵ(ω) = Ŵ(ωb) + Ŵ1(ω − ωb), (4.5)

where Ŵ1 describes the linear variation of Ŵ(ω) near the

boson peak. The fit in Fig. 5, bottom, required the values

Ŵ(ωb) = −4.4 and Ŵ1 = 1.2 meV−1, as specified in the

caption. With this frequency-dependent Grüneisen parameter,

we then calculate the thermal expansion coefficient according

to Eq. (4.3).

The thermal Grüneisen parameter at the maximum of

cP /T 3 corresponding to the boson-peak frequency is −4.4

(negative, because the thermal expansion in the relevant region

is negative). This is not directly Ŵb, because the boson peak

is a peak in g(ω)/ω2. In order to determine Ŵb, we calculate

the peak shift for a small volume change numerically. In this

procedure, we find a strong influence of the linear variation

of Ŵ(ω) at ωb. For silica, we get Ŵb = −10.8, a much larger

negative value than Ŵ(ωb).

The reason for this strikingly large difference lies in the

behavior of the background of a peak in g(ω/)ω2, which

initially is a density of states proportional to frequency squared.

Note that our slope value of 1.2 meV−1 implies that one has a

negative Grüneisen parameter of −9.2 at the frequency zero,

which gradually goes to zero at about twice the boson-peak
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FIG. 6. (Color online) Fit of the reduced vibrational density

of states of vitreous silica. Symbols: neutron scattering measure-

ment [54], blue dashed line: Debye part, and red line: sum of Debye

part and excess density. Boson peak height and intensity are fitted to

the experimental value.

frequency. The strong frequency dependence of the Grüneisen

parameter has a drastic influence on the scaling behavior of

g(ωb)/ω2
b, which no longer scales with 1/ω3

b. Instead, the

numerical calculation showed a much weaker scaling with

1/ω1.3
b . In our model, this would imply a value of n = 0.93 to

satisfy Eq. (2.25).

Next, we investigate how these findings translate to our

description in terms of QLVs. As a first step we fit the reduced

VDOS, see Figure 6. Following the procedure outlined above,

we choose n = 1, use the approximate form of Eq. (2.21) for

γJ , and fit only γω.

Since our model only determines the excess VDOS, gexc(ω),

we add the experimentally known Debye part. There is a

problem concerning its high-frequency cutoff. Near the BP

frequency, the Ioffe-Regel limit is reached for the sound waves,

the modes become strongly intertwined. Level repulsion will

affect all the modes strongly. In the approximation of the

present model, this means that the modes turn into “high-

frequency oscillators.” To take this into account, a smooth

cutoff was introduced, see the dashed blue line.

As to be expected, the heat capacity calculated for the fitted

VDOS (red line) is in good agreement with the measured

vibrational part of the specific heat, see Fig. 7, top. The

deviation from experiment is similar to the one of the simple

quadratic fit (blue line). To include the contributions of the

two-level systems (TLS), which dominate cV below T ≈
2 K, we added the term cTLS = 3.04 Jm−3 K−2 determined

experimentally [57]. For comparison, we show by the dash-

dotted green line the low-temperature fit by Lyon et al. [57].

At temperatures around 2 K, this fit indicates a higher number

of thermally active modes than in our fit. Such a difference is

also observed experimentally for different samples, see Fig. 5.

This can be accounted for in our description by increasing the

two-level contribution to cTLS = 3.04 Jm−3 K−2 (dashed red

line).

Next, we calculate the thermal volume expansion coef-

ficient at low temperatures. We consider only the “affine”

effects discussed above. This would give us, in principle,

three parameters: γω, γJ , and n. To reduce the number of

parameters, we fix n = 1, as indicated from the above, and take

0
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FIG. 7. (Color online) Fit of the low-temperature thermal proper-

ties of vitreous silica. (Top) Heat capacity cp per unit volume, plotted

as cp/T 3. Symbols: measured data [54], red line: values calculated for

the fitted spectrum in Fig. 6, dashed red line: values with increased

TLS contribution, blue line: values calculated from the measured

vibration spectrum, and green dash-dotted line: low-temperature

fit [57]. (Bottom) Volume thermal expansion α plotted as α/T 3.

Measured data: triangles and diamonds [59]; green dash-dotted line:

low-temperature fit [57]; blue dash-dotted line: contribution of the

Debye part calculated with the measured low-temperature Grüneisen

constant γD = −2.29 [60]; solid red line: sum of total vibrational and

TLS contributions; and dashed red line: sum of total vibrational and

enhanced TLS contributions.

ωc = 2.5ωB . We assume that in the considered temperature

interval no dramatic effects regarding the mode couplings

occur and approximate the coupling partial Grüneisen constant

by the Debye expression of Eq. (2.21) γJ ≈ 0.5 − γD . The

remaining unknown γω, the partial Grüneisen constant of

noninteracting modes, we then treat as fit parameter. For γω =
15, we get an excellent fit, apart from the lowest temperature,

see red line in Fig. 7, bottom. The TLS contribution was taken

as αTLS/T 3 = −1.323 [57]. Increasing the TLS contribution as

before for the specific heat, the fit becomes perfect also at low

temperatures (red dashed line). The Debye contribution to the

low-temperature volume expansion is nearly negligible (blue

dash-dotted line). For comparison, the low-temperature fit of

Lyon et al. is shown as green dash-dotted line. The fitted value

of γω has not too much significance since it would be strongly

affected by including correlated nonaffine contributions. Not

taking these into account, n is given within a margin of about

30%.

The Grüneisen parameters of the individual modes consti-

tuting the BP cannot be readily identified. Instead, we define a

frequency dependent Grüneisen parameter γ (ω) by averaging

over modes of similar frequency. We define the shift of the

modes by

∫ ω

0

dω′g(ω′,P = 0) =
∫ ω+
ω(P )

0

dω′g(ω′,P ). (4.6)
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FIG. 8. (Color online) Frequency-dependent Grüneisen con-

stants of SiO2: of the total spectrum (solid black line), the Debye

part (blue dash-dotted line), and the excess spectrum (red dashed

line). The experimental fit, Fig. 5, is shown as green dotted line.

This procedure accounts for the net effect of individual

modes shifted up and down by pressure and accounts for

the conservation of the number of modes. We calculate the

mode Grüneisen constants γ (ω) within the context of our

description. These refer to the eigenmodes of of our system

as opposed to the γω, which describe a frequency independent

average shift of the noninteracting modes. The red dashed line

in Fig. 8 shows the frequency dependent Grüneisen parameter

of the excess modes. At low frequencies, it starts with a

constant value of γ (ω) ≈ −9 that indicates a strengthening

of the g(ω) ∝ ω4 part of the spectrum. The shifting of modes

from the higher-frequency part of the BP is reflected in a

decrease of the negative value of γ (ω). The experimental fit of

Fig. 5 can be seen as a linear approximation (green line). The

constant Grüneisen constant of the Debye modes is indicated

as blue line. The total frequency-dependent Grüneisen constant

is shown in black. It starts at the Debye value and is dominated

at higher frequencies by the BP.

2. PMMA

The second example in Fig. 9 is a polymer, polymethyl-

methacrylate (PMMA). Again, the neutron measurement [62]

at 40 K is in reasonable agreement with the measured heat

capacity data [61], as shown in Fig. 9(a). The measured thermal

expansion [57,58] in Fig. 9(b) is positive and explainable in

terms of a single frequency-independent Grüneisen Ŵ = 2.4

for all modes comprising the BP. The numerical calculation

gives Ŵb = 2.35, close to Ŵ(ωb). This shows that for a weak

frequency dependence, one can approximate Ŵb by the value

Ŵ(ωb), which in turn corresponds to Ŵ(T ) at the maximum of

cp/T 3 according to Eq. (4.2). Note that the value Ŵ = 2.4 is

less than the value for the sound waves (Debye modes) γD =
4.25, reported in Ref. [57]. The approximation of a constant

Ŵ(ω), therefore does not hold at the lowest frequencies.

To check whether our description can reproduce the

experimental findings, we employ the same procedure as for

vitreous silica. Figure 10 shows that the reduced VDOS of

PMMA again can be fitted by a Debye part with a smooth

cutoff (blue line) plus our universal BP shape.

(a)

(b)

FIG. 9. Low-temperature thermal properties of polymethyl-

methacrylate (PMMA). (Top) Heat capacity cp per unit volume,

plotted as cp/T 3, where T is the temperature. Measured data [61]

are in reasonable agreement with the heat capacity calculated from

the vibrational density of states measured by inelastic neutron

scattering [62] at 40 K. (Bottom) The volume thermal expansion α,

plotted as α/T 3. The measured data [57,58] are fitted in terms of the

neutron spectrum at 40 K with a frequency-independent Grüneisen

parameter Ŵ = 2.4.

The heat capacity calculated from the fitted VDOS (red

line) again is in good agreement with the measured vibrational

part of the specific heat, see Fig. 11, top. To include the

contributions of the two level systems (TLS), which dominate

cV below T ≈ 2 K, we added the term cTLS = 5.28 Jm−3 K−2

determined experimentally [57]. For comparison. we also

show by the dash-dotted green line the low-temperature fit

by Lyon et al. [57]. The volume expansion coefficient again

0
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FIG. 10. (Color online) Fit of the reduced vibrational density

of states of polymethylmethacrylate (PMMA). Symbols: neutron

scattering measurement [62], blue dashed line: Debye part, and red

line: sum of Debye part and excess density.
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FIG. 11. (Color online) Fit of the low-temperature thermal prop-

erties of polymethylmethacrylate (PMMA). (Top) Heat capacity cp

per unit volume, plotted as cp/T 3. Symbols: measured data [61] and

red line: values calculated for the fitted spectrum in Fig. 6 with an

added contribution for TLS [57]. For comparison, a low-temperate

fit using TLS and Debye contributions [57] is shown (dash-dotted

green line). (Bottom) Volume thermal expansion α plotted as α/T 3.

Symbols: measured data [57] and blue line: contribution of the

Debye part calculated with the measured low-temperature Grüneisen

constant γD = 4.25 [57], green line: fit by a sum of tunneling and

Debye contributions [57] and red line: sum of tunneling, Debye

and BP contributions using one parameter fit γω = 0.4, γJ given

by Eq. (2.21).

can be fitted by a single parameter γω = 0.38γD . The fit is

slightly improved by a higher value of n than in the silica case

and we set it to n = 2. This value is, however, not well defined

by the fit. For γJ , we use again the approximate expression,

Eq. (2.21). To account for the tunneling systems, we added

a term αTLS/T 3 = −10.56 [57]. The resulting fit (solid red

line) again is in agreement with experiment. Other than in

the silica case the vibrational part of the volume expansion is

dominated by the Debye contribution (blue dashed line). For

comparison, we also show the low-temperature fit by Lyon

et al. (green dash-dotted line). Figure 12 shows the vibrational

Grüneisen parameters. It shows clearly the much higher values

of the Debye contribution (blue line) compared to the one of

the excess modes (red line). The weighted sum of the two

gives the total Grüneisen parameter Ŵ(ω) (black line). It tends

to drop with increasing frequency and shows due to the BP a

maximum, that is shifted to higher frequencies compared to the

maximum in the scattering intensity. The value fitted directly

from experiment, Fig. 9 averages over the low-frequency

part.

B. High pressure

In the following, we discuss high-pressure measurements of

the boson peak, most of them done with the Raman scattering

technique. This has the disadvantage of showing the boson

0

4

0 5

ω (meV)

γ
(ω

)

FIG. 12. (Color online) Frequency-dependent Grüneisen con-

stants of the total vibrational spectrum (black solid line) of PMMA,

of the Debye part (blue dash-dotted line), and of the excess spectrum

(red dashed line). The experimental fit, Fig. 9, is shown as green

dotted line.

peak at a higher frequency than the one of the true maximum

in g(ω)/ω2. Hopefully, however, the relative change of the

boson-peak frequency should be the same.

1. Vitreous silica

At room temperature and high pressure, the boson-peak

frequency of vitreous silica does not decrease, but increases

strongly [36] (though with an initial low-pressure increase

of nearly zero [63]), following the prediction of Eq. (2.43)

with P0 = 0.44 GPa. If this effect were due exclusively to

the correlated effect of Eq. (2.43), one would expect with

K = 45 GPa a positive initial slope of Ŵb = 36. Instead, one

has a strongly negative initial slope. Thus one concludes that

the uncorrelated effects dominate the high-pressure behavior

in silica, probably due to pressure-induced relaxations, which

increase the internal strains and thus increase the linear mode

potential terms at the boson peak.

This interpretation is supported by a measurement of

the sound velocities in silica at room temperature up to

high pressures [64]. Though their pressure dependence is

much weaker than the one of the boson peak, they also

show an anomalous behavior. Up to a pressure of 3 GPa,

they decrease (in accordance with the measured negative

Grüneisen parameter of the Debye frequency [57]) and then

rise for higher pressures. The initial decrease is limited to the

pressure range where no irreversible changes are induced. As

soon as the pressures are high enough to cause irreversible

changes, the sound velocity after pressure removal remains

higher than the initial one. Irreversible structural changes

automatically mean increased atomic displacements and in

turn enhanced local forces and a larger shift of the BP,

expressed by lower P0 values.

The interpretation is further supported by the properties of

densified silica [62], which has a 10% higher Debye frequency

and a factor of 1.6 higher boson-peak frequency than normal

vitreous silica. Densified silica, obtained by applying a strong

pressure at higher temperature (but still well below the glass

temperature) and releasing the pressure at room temperature,
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is an example that exhibits only the irreversible changes. The

measurement shows that the irreversible changes have the

opposite sign to the reversible ones, but are also much stronger

for the boson peak than for the sound waves, with a similar

ratio.

2. As2S3

In the well-investigated case [39] of As2S3, the measure-

ments extend down to rather low pressure. One does not see

any indication of a failure of Eq. (2.43) at low pressure, i.e.,

no indication of a crossover from correlated to uncorrelated

force effects. This would indicate the opposite situation to

SiO2, namely, a dominance of the correlated effect and a small

contribution by configurational changes.

One can check this conjecture by a direct comparison to the

low-temperature data [60]. The high-pressure measurements

corroborate again Eq. (2.43) with P0 = 0.55 GPa. The bulk

modulus [65] at room temperature is 13 GPa, so one expects

Ŵb = 7.8 from Eq. (2.30). Instead, Ŵ(T ) in the boson-peak

region is constant and has the much smaller value 1.8. The

comparison shows that more than three quarters of the high-

pressure effect must be due to uncorrelated forces.

As2S3 has a glass temperature of 454 K, not too far

above room temperature. Since one expects the relaxational

processes to be thermally activated, it is possible that they

start at rather low pressure but their trace is not seen in an

irreversible remnant.

Nevertheless, since the measurement was done below Tg

where no complete recovery to the original state is possible,

one should expect some irreversible effects, which should be

revealed in a dedicated search. Such a dedicated search would

require careful experiments with virgin samples, freshly cooled

in a well-defined way from the glass transition. If one repeats

the room-temperature experiment several times (as one usually

does to see whether one has reproducible results), one cannot

expect to see the irreversible part; this should only be visible

the first time.

3. B2O3

An even larger difference than in As2S3 is found in

B2O3, where the low-temperature expansion data [60] suggest

a Ŵb close to zero, while room-temperature high-pressure

measurements of the boson peak, interpreted in terms of

Eq. (2.43), suggest P0 = 0.29 GPa. With a bulk modulus [66]

of 11 GPa, one would expect Ŵb = 11.4. This example shows

again a much stronger pressure dependence of the boson

peak in the irreversible high-pressure range, i.e., a clear

predominance of the effect of uncorrelated forces at high

pressure.

4. Polymers

There are no high-pressure measurements of the boson-

peak frequency for PMMA, but for five other polymers [41],

which again obey Eq. (2.43). Extrapolated from high pressures,

the five polymers have an average value Ŵb = 4.6 (the lowest

value is 3.48) decidedly higher than the value 2.35 extrapolated

from the low-temperature measurements. Thus there is little

doubt that the uncorrelated term dominates the high-pressure

behavior also in the polymers.

V. DISCUSSION

Our results show that, at least for the studied substances,

the picture of the BP formed from QLV provides a mechanism

of the low-temperature volume expansion as well as the

high-pressure shift of the BP and its intensity. For the low-

temperature expansion, theory allows for more parameters than

one can fit to the data. The parameters can be combined to two

effective parameters describing the shift and enhancement of

the BP.

All low-frequency vibrational eigenmodes in the glass,

including the ones forming the BP are extended. In our

interpretation, they are superpositions of local modes, the

“oscillators” at the centers of the QLV, and extended sound

wavelike modes. The BP is formed by an interaction of the

local modes. By this mechanism, a softening of the oscillator

modes can even cause a blue shift of the BP. This is contrary

to the results of a simplified description in terms of localized

vibrations (oscillators) only [67].

In our description, the VDOS of the excess modes increases

at the lowest frequencies as g(ω) ∝ ω4 and above the BP

as g(ω) ∝ ω. The initial ω4 increase is a universal property.

Therefore results relating to this frequency range are quite

stable. The high-frequency flank of the BP is much more

strongly affected by the interaction with a varying number

of modes with varying interaction strengths. Although the

shape of the BP is largely universal there are slight variations

due to anharmonic terms around and above the BP [35].

These deviations from the “universal” shape are effected by

pressure. In particular, modes pushed up by a decrease of

the ω4 part, i.e., modes pushed out of the seagull singularity

will be moved to the higher-frequency region to conserve the

number of vibrational modes. In our calculation, we have

strictly conserved the number of modes. How exactly these

modes are distributed near and above the BP is beyond our

simple description. We have reproduced the low-temperature

thermal expansion by a single parameter γω, the Grüneisen

coefficient of the local noninteracting modes (the oscillators

of the soft potential model). The resulting values of γω are

in a reasonable range but it should not be forgotten that

they may hide correlated nonaffine contributions or changes

of the intermode coupling beyond the simple Debye effect.

The message we want to convey is that the description by

QLVs reproduces the temperature dependence of the thermal

expansion, not what the exact value of the various macroscopic

parameters is.

The present work poses several questions. Why does the

nonaffine (force) effect seem to be stronger at high pressures

or why can we not extrapolate from high to low pressures or

vice versa? What is the role of irreversible processes? What

is the relative importance of correlated versus uncorrelated

effects, i.e., the dependence of ωb(P ) on P or P 2.

The case of SiO2 clearly shows a discrepancy between high-

and low-pressure properties. At low temperatures, the volume

expansion indicates a shift of the “oscillator” frequencies with

a Grüneisen parameter comparable to the Debye one and an

additional shift by the nonaffine (force) effects discussed in

our previous work [35]. The pressure shift of the BP follows

the (P/P0)1/3 law predicted for the nonaffine effect at high

pressure but is zero or even negative at low pressure. The
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positive boson-peak shift on densification allows to associate

the high-pressure effect to relaxations.

Also in crystalline quartz at low temperatures, negative

expansion and Grüneisen coefficients are found [68,69], but

the thermal expansion remains positive at all temperatures.

This shows that the strongly negative Grüneisen parameters at

and below the boson peak are a specific glass effect. Higher-

frequency modes, both in quartz and in vitreous silica, tend to

have positive Grüneisen constants [70], which leads to positive

expansion coefficients at higher temperatures.

VI. CONCLUSION

The boson peak due to QLV is highly asymmetric. The

excess of the inelastic scattering intensity over the Debye

intensity (given by the sound waves) increases at low fre-

quencies ∝ω2 and drops ∝ω−1 above the BP frequency, ωb.

Low-frequency modes are very susceptible to perturbations. A

shift of a few vibrational modes in or out of the low-frequency

flank strongly affects ωb, whereas a similar shift on the

high-frequency side has much less effect. The dominant effect

of pressure on the BP is therefore asymmetrically on the

low-frequency side.

We have discussed the various contributions to the shift

of the boson peak under an applied pressure. For crystalline

lattices, the change of the vibrational density of states is

mostly described in the quasiharmonic approximation. The

eigenfrequencies are calculated from the harmonic coefficients

evaluated for the pressure dependent lattice constants. The

Grüneisen constants are given by the change of the harmonic

force constants under pressure. This can be written as deriva-

tive with respect to strain times strain as function of pressure.

In analogy to this, we defined affine Grüneisen parameters that

include the effects of uniform changes of distances.

In glasses, such a description is not sufficient. Disorder

causes large nonaffine displacements whose effects cannot

fully be described by the averaged affine effects. Forces

induced by nonaffine displacements cause additional shifts of

the boson peak. They lead, in particular, to the high-pressure

shift ∝(P/P0)1/3 observed in experiment. The forces can be

split into correlated and uncorrelated forces. Correlated forces

are due to the elastic polarizability of soft vibrations. They

enhance the forces that lead to the creation of the boson peak

in the first place. Additionally, pressure can induce new forces

uncorrelated to the existing ones. Strong such forces will be

induced, e.g., if one crosses the energy barrier between two

structural energy minima.

Nonreversibility might be a clue to this, whereas the BP

shift due to correlated effects depends on P , the shift by

the uncorrelated ones is independent of the sign of P , it

only depends on the modulus of the pressure (or pressure

squared). For high positive pressure, the two force effects are

indistinguishable. Experiments involving negative pressures

could lift this ambiguity. The influence of reversible and

irreversible local relaxations could be probed by measurements

at different temperatures.

In the comparison to experiment, we described four cases

where the comparison of the low-pressure boson-peak shifts

calculated from low-temperature thermal measurements was

much smaller than the value extrapolated from high-pressure

measurements. This shows that the high-pressure forces are

predominantly uncorrelated to the random forces, which

already exist. This suggests that they are mainly due to

pressure-induced relaxations.

To avoid future misunderstandings, we want to stress that in

the expression P0 = 3Kf0/�0, all quantities refer to the state

P = 0. Changes with pressure of the compression modulus K

largely cancel with the concomitant change of the coupling

�0. This explains why even in materials with a large variation

of K a constant P0 may be observed.

Our description is valid for boson peaks, which are caused

by disorder. Boson peaks that originate in intrinsic soft modes,

also present in a crystalline structure, may have different

properties. If disorder and coupling between such modes

becomes sufficiently large a “disorder BP” may appear and

eventually merge with the intrinsic one.
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M. Meissner, and E. Donth, Macromolecules 34, 5927

(2001).

[62] U. Buchenau, A. Wischnewski, M. Ohl, and E. Fabiani, J. Phys.:

Condens. Matter 19, 205106 (2007).

[63] T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C.

Coussa-Simon, and B. Champagnon, J. Non-Cryst. Solids 355,

2422 (2009).

[64] Ch.-Sh. Zha, R. J. Hemley, H.-K. Mao, Th. S. Duffy, and

C. Meade, Phys. Rev. B 50, 13105 (1994).

[65] M. P. Brassington, J. Miller, and G. A. Saunders, Phil. Mag. B

43, 1049 (1981).

[66] M. Grimsditch and L. M. Torell, in Dynamics of Disordered

Materials, edited by D. Richter, A. J. Dianoux, W. Petry, and J.

Teixeira (Springer, Berlin, 1989), p. 196.

[67] V. Hizhnyakov, A. Laisaar, J. Kikas, A. Kuznetsov, V. Palm, and

A. Suisalu, Phys. Rev. B 62, 11296 (2000).

[68] T. H. K. Barron, J. F. Collins, T. W. Smith, and G. K. White, J.

Phys. C 15, 4311 (1982).

[69] G. A. Lager, J. D. Jorgensen, and F. J. Rotella, J. Appl. Phys.

53, 6751 (1982).

[70] Q. Williams, R. J. Hemley, M. B. Kruger, and R. Jeanloz, J.

Geophys. Res. 98, 22157 (1993).

014204-16


