000201474 001__ 201474
000201474 005__ 20210129215800.0
000201474 0247_ $$2doi$$a10.1109/TNANO.2015.2411774
000201474 0247_ $$2ISSN$$a1536-125X
000201474 0247_ $$2ISSN$$a1941-0085
000201474 0247_ $$2WOS$$aWOS:000354453800013
000201474 037__ $$aFZJ-2015-03769
000201474 041__ $$aEnglish
000201474 082__ $$a530
000201474 1001_ $$0P:(DE-HGF)0$$aTappertzhofen, Stefan$$b0$$eCorresponding Author
000201474 245__ $$aModeling of Quantized Conductance Effects in Electrochemical Metallization Cells
000201474 260__ $$aNew York, NY$$bIEEE$$c2015
000201474 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435135819_21683
000201474 3367_ $$2DataCite$$aOutput Types/Journal article
000201474 3367_ $$00$$2EndNote$$aJournal Article
000201474 3367_ $$2BibTeX$$aARTICLE
000201474 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201474 3367_ $$2DRIVER$$aarticle
000201474 520__ $$aThe integration of microelectronics and information technology goes progressively on, and nonvolatile memory devices are now based on processes on the atomic scale. Thus, quantum size effects become an inevitable part of the modern devices. Here, we report on conductance quantization effects in electrochemical metallization cells at room temperature. We modified the extended memristor model for a SPICE simulation based on the experimental results for SiO2- and AgI-based ECM cells. Additionally, we present a 1-D kinetic Monte Carlo simulation model to account for quantum size effects. Our simulation models comprises the impact of the recently discovered nonequilibrium states on the stability of quantized conductance values and reproduces the stochastic nature of the resistance levels.
000201474 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000201474 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201474 7001_ $$0P:(DE-HGF)0$$aLinn, Eike$$b1
000201474 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b2$$ufzj
000201474 7001_ $$0P:(DE-HGF)0$$aKenyon, Anthony J.$$b3
000201474 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b4
000201474 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b5$$ufzj
000201474 773__ $$0PERI:(DE-600)2082654-0$$a10.1109/TNANO.2015.2411774$$gVol. 14, no. 3, p. 505 - 512$$n3$$p505 - 512$$tIEEE transactions on nanotechnology$$v14$$x1941-0085$$y2015
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.pdf$$yRestricted
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.gif?subformat=icon$$xicon$$yRestricted
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201474 8564_ $$uhttps://juser.fz-juelich.de/record/201474/files/07058357.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201474 909CO $$ooai:juser.fz-juelich.de:201474$$pVDB
000201474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201474 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x0
000201474 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201474 9141_ $$y2015
000201474 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201474 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201474 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201474 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201474 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201474 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201474 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201474 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201474 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201474 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201474 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201474 980__ $$ajournal
000201474 980__ $$aVDB
000201474 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201474 980__ $$aUNRESTRICTED