000201478 001__ 201478
000201478 005__ 20210129215802.0
000201478 0247_ $$2doi$$a10.1039/C4NR07545E
000201478 0247_ $$2ISSN$$a2040-3364
000201478 0247_ $$2ISSN$$a2040-3372
000201478 0247_ $$2WOS$$aWOS:000351934700015
000201478 037__ $$aFZJ-2015-03773
000201478 041__ $$aEnglish
000201478 082__ $$a600
000201478 1001_ $$0P:(DE-HGF)0$$aShang, Dashan$$b0$$eCorresponding Author
000201478 245__ $$aUnderstanding the conductive channel evolution in Na:WO $_{3−x}$ -based planar devices
000201478 260__ $$aCambridge$$bRSC Publ.$$c2015
000201478 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435136104_21687
000201478 3367_ $$2DataCite$$aOutput Types/Journal article
000201478 3367_ $$00$$2EndNote$$aJournal Article
000201478 3367_ $$2BibTeX$$aARTICLE
000201478 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201478 3367_ $$2DRIVER$$aarticle
000201478 520__ $$aAn ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3−x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3−x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3−x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.
000201478 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000201478 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201478 7001_ $$0P:(DE-HGF)0$$aLi, Peining$$b1
000201478 7001_ $$0P:(DE-HGF)0$$aWang, Tao$$b2
000201478 7001_ $$0P:(DE-HGF)0$$aCarria, Egidio$$b3
000201478 7001_ $$0P:(DE-HGF)0$$aSun, Jirong$$b4
000201478 7001_ $$0P:(DE-HGF)0$$aShen, Baogen$$b5
000201478 7001_ $$0P:(DE-HGF)0$$aTaubner, Thomas$$b6
000201478 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b7
000201478 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b8
000201478 7001_ $$0P:(DE-HGF)0$$aWuttig, Matthias$$b9
000201478 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C4NR07545E$$gVol. 7, no. 14, p. 6023 - 6030$$n14$$p6023 - 6030$$tNanoscale$$v7$$x2040-3372$$y2015
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.pdf$$yRestricted
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.gif?subformat=icon$$xicon$$yRestricted
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201478 8564_ $$uhttps://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201478 909CO $$ooai:juser.fz-juelich.de:201478$$pVDB
000201478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000201478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000201478 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x0
000201478 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201478 9141_ $$y2015
000201478 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201478 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201478 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201478 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201478 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201478 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201478 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201478 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201478 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201478 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201478 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201478 980__ $$ajournal
000201478 980__ $$aVDB
000201478 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201478 980__ $$aUNRESTRICTED