001     201478
005     20210129215802.0
024 7 _ |a 10.1039/C4NR07545E
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a WOS:000351934700015
|2 WOS
037 _ _ |a FZJ-2015-03773
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Shang, Dashan
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Understanding the conductive channel evolution in Na:WO $_{3−x}$ -based planar devices
260 _ _ |a Cambridge
|c 2015
|b RSC Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435136104_21687
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3−x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3−x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3−x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Li, Peining
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, Tao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carria, Egidio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sun, Jirong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shen, Baogen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Taubner, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 7
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wuttig, Matthias
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1039/C4NR07545E
|g Vol. 7, no. 14, p. 6023 - 6030
|0 PERI:(DE-600)2515664-0
|n 14
|p 6023 - 6030
|t Nanoscale
|v 7
|y 2015
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201478/files/c4nr07545e-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201478
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131014
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-HGF)0
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21