000201480 001__ 201480
000201480 005__ 20210129215802.0
000201480 0247_ $$2doi$$a10.1002/pssa.201431489
000201480 0247_ $$2ISSN$$a0031-8965
000201480 0247_ $$2ISSN$$a1521-396X
000201480 0247_ $$2ISSN$$a1862-6300
000201480 0247_ $$2ISSN$$a1862-6319
000201480 0247_ $$2WOS$$aWOS:000352820100008
000201480 037__ $$aFZJ-2015-03775
000201480 041__ $$aEnglish
000201480 082__ $$a530
000201480 1001_ $$0P:(DE-Juel1)142040$$aKärkkänen, Irina$$b0
000201480 245__ $$aImpedance spectroscopy study of the unipolar and bipolar resistive switching states of atomic layer deposited polycrystalline ZrO $_{2}$ thin films
000201480 260__ $$aWeinheim$$bWiley-VCH$$c2015
000201480 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435137269_21684
000201480 3367_ $$2DataCite$$aOutput Types/Journal article
000201480 3367_ $$00$$2EndNote$$aJournal Article
000201480 3367_ $$2BibTeX$$aARTICLE
000201480 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201480 3367_ $$2DRIVER$$aarticle
000201480 520__ $$aThe polarity of the resistive switching (RS) characteristic of metal-oxide-metal devices from atomic layer deposited polycrystalline ZrO2 films was studied by means of impedance spectroscopy. Pt/ZrO2/Ti/Pt cells made with 10 nm Ti and 30 nm Pt capping top electrodes, served as unipolar switching (US) devices. Bipolar switching (BS) devices were represented by Pt/ZrO2/30 nm TiN cells. Temperature measurements of the ON-state resistances clearly show metallic and semiconducting behavior for the US and BS cells, respectively. The pristine and the ON and OFF states of the devices were analyzed by means of impedance spectroscopy. All ZrO2 based RS devices exhibited similar impedance characteristics in the pristine states. In contrast, after electroforming clear differences in the Nyquist-plots of the US and BS devices were observed. The effect of the device structure on the RS polarity is discussed under consideration of the pillar-shaped grainy microstructure of the ZrO2 thin films. An empirical model based on redox reactions between ZrO2 and the non-noble metal electrode is proposed emphasizing defect formation prior at the ZrO2 grain boundaries.
000201480 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000201480 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201480 7001_ $$0P:(DE-Juel1)145072$$aShkabko, Andrey$$b1
000201480 7001_ $$0P:(DE-HGF)0$$aHeikkilä, Mikko$$b2
000201480 7001_ $$0P:(DE-HGF)0$$aVehkamäki, Marko$$b3
000201480 7001_ $$0P:(DE-HGF)0$$aNiinistö, Jaakko$$b4
000201480 7001_ $$0P:(DE-Juel1)140489$$aAslam, Nabeel$$b5
000201480 7001_ $$0P:(DE-Juel1)130836$$aMeuffels, Paul$$b6
000201480 7001_ $$0P:(DE-HGF)0$$aRitala, Mikko$$b7
000201480 7001_ $$0P:(DE-HGF)0$$aLeskelä, Markku$$b8
000201480 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b9
000201480 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b10$$eCorresponding Author
000201480 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201431489$$gVol. 212, no. 4, p. 751 - 766$$n4$$p751 - 766$$tPhysica status solidi / A$$v212$$x1862-6300$$y2015
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.pdf$$yRestricted
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.gif?subformat=icon$$xicon$$yRestricted
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201480 8564_ $$uhttps://juser.fz-juelich.de/record/201480/files/pssa201431489.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201480 909CO $$ooai:juser.fz-juelich.de:201480$$pVDB
000201480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142040$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145072$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130836$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000201480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000201480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000201480 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x0
000201480 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201480 9141_ $$y2015
000201480 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201480 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201480 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201480 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201480 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201480 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201480 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201480 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201480 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201480 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201480 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000201480 980__ $$ajournal
000201480 980__ $$aVDB
000201480 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201480 980__ $$aI:(DE-82)080009_20140620
000201480 980__ $$aUNRESTRICTED