000201501 001__ 201501
000201501 005__ 20210129215808.0
000201501 0247_ $$2doi$$a10.1016/j.actamat.2014.05.016
000201501 0247_ $$2ISSN$$a1359-6454
000201501 0247_ $$2ISSN$$a1873-2453
000201501 0247_ $$2WOS$$aWOS:000340330400009
000201501 037__ $$aFZJ-2015-03796
000201501 041__ $$aEnglish
000201501 082__ $$a670
000201501 1001_ $$0P:(DE-HGF)0$$aMillán, J.$$b0
000201501 245__ $$aDesigning Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels
000201501 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000201501 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435232244_9510
000201501 3367_ $$2DataCite$$aOutput Types/Journal article
000201501 3367_ $$00$$2EndNote$$aJournal Article
000201501 3367_ $$2BibTeX$$aARTICLE
000201501 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201501 3367_ $$2DRIVER$$aarticle
000201501 520__ $$aB2 NiMn and Ni2MnAl Heusler nanoprecipitates are designed via elastic misfit stabilization in Fe–Mn maraging steels by combining transmission electron microscopy (TEM) correlated atom probe tomography (APT) with ab initio simulations. Guided by these predictions, the Al content of the alloys is systematically varied, and the influence of the Al concentration on structure stability, size and distribution of precipitates formed during ageing at 450 °C is studied using scanning electron microscopy–electron backscatter diffraction, TEM and APT. Specifically, the Ni2MnAl Heusler nanoprecipitates exhibit the finest sizes and highest dispersion and hence lead to significant strengthening. The formation of the different types of precipitates and their structure, size, dispersion and effect on the mechanical properties of the alloys are discussed.
000201501 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201501 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201501 7001_ $$0P:(DE-HGF)0$$aSandlöbes, S.$$b1$$eCorresponding Author
000201501 7001_ $$0P:(DE-Juel1)130498$$aAl-Zubi, A.$$b2
000201501 7001_ $$0P:(DE-HGF)0$$aHickel, T.$$b3
000201501 7001_ $$0P:(DE-HGF)0$$aChoi, P.$$b4
000201501 7001_ $$0P:(DE-HGF)0$$aNeugebauer, J.$$b5
000201501 7001_ $$0P:(DE-HGF)0$$aPonge, D.$$b6
000201501 7001_ $$0P:(DE-HGF)0$$aRaabe, D.$$b7
000201501 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2014.05.016$$gVol. 76, p. 94 - 105$$p94 - 105$$tActa materialia$$v76$$x1359-6454$$y2014
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.pdf$$yRestricted
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.gif?subformat=icon$$xicon$$yRestricted
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201501 8564_ $$uhttps://juser.fz-juelich.de/record/201501/files/1-s2.0-S1359645414003644-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201501 909CO $$ooai:juser.fz-juelich.de:201501$$pVDB
000201501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130498$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201501 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201501 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000201501 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201501 9141_ $$y2015
000201501 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201501 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201501 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201501 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201501 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201501 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201501 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201501 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201501 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201501 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201501 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201501 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201501 980__ $$ajournal
000201501 980__ $$aVDB
000201501 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201501 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201501 980__ $$aUNRESTRICTED
000201501 981__ $$aI:(DE-Juel1)PGI-1-20110106