000201502 001__ 201502
000201502 005__ 20210129215809.0
000201502 0247_ $$2doi$$a10.1021/jp405670v
000201502 0247_ $$2ISSN$$a1932-7447
000201502 0247_ $$2ISSN$$a1932-7455
000201502 0247_ $$2WOS$$aWOS:000326845400027
000201502 0247_ $$2altmetric$$aaltmetric:2334960
000201502 037__ $$aFZJ-2015-03797
000201502 041__ $$aEnglish
000201502 082__ $$a540
000201502 1001_ $$0P:(DE-HGF)0$$aLogsdail, Andrew J.$$b0$$eCorresponding Author
000201502 245__ $$aImproving the Adsorption of Au Atoms and Nanoparticles on Graphite via Li Intercalation
000201502 260__ $$aWashington, DC$$bSoc.$$c2013
000201502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435232547_9510
000201502 3367_ $$2DataCite$$aOutput Types/Journal article
000201502 3367_ $$00$$2EndNote$$aJournal Article
000201502 3367_ $$2BibTeX$$aARTICLE
000201502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201502 3367_ $$2DRIVER$$aarticle
000201502 520__ $$aSupported nanoclusters have an important future in chemical processes such as catalysis. However, to optimize the properties of supported nanoclusters, attention must be paid to the electronic properties of both adsorbate and substrate materials. Highly ordered pyrolytic graphite is commonly used as a substrate for Au nanoclusters; however, cluster functionality and mobility is a problem on this inert surface. Therefore, we have designed a model for Li-doped graphite and investigated the electronic properties of adsorbed Au atoms and nanoclusters on this material using density functional theory (DFT). We find that increasing the concentration of Li atoms in the substrate results in improved adsorption for both Au atoms and Au16 nanoclusters onto the surface, with adsorption energies up to 0.96 and 1.50 eV, respectively, when using the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional. In the case of the Au16 nanocluster, charge transfer of >1 e is computed, which should make this supported system functionally suitable for reactions such as CO oxidation. Furthermore, a pseudoionic bond is observed in some cases for atomic Au over a surface C atom, though the presence of such chemical interaction is dependent on the exchange-correlation functional used.
000201502 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201502 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201502 7001_ $$0P:(DE-HGF)0$$aJohnston, Roy. L.$$b1
000201502 7001_ $$0P:(DE-Juel1)130496$$aAkola, Jaakko$$b2$$ufzj
000201502 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp405670v$$gVol. 117, no. 44, p. 22683 - 22695$$n44$$p22683 - 22695$$tThe @journal of physical chemistry <Washington, DC> / C$$v117$$x1932-7455$$y2013
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.pdf$$yRestricted
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.gif?subformat=icon$$xicon$$yRestricted
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201502 8564_ $$uhttps://juser.fz-juelich.de/record/201502/files/jp405670v.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201502 909CO $$ooai:juser.fz-juelich.de:201502$$pVDB
000201502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130496$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201502 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201502 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000201502 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201502 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201502 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201502 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201502 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201502 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201502 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201502 980__ $$ajournal
000201502 980__ $$aVDB
000201502 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201502 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201502 980__ $$aUNRESTRICTED
000201502 981__ $$aI:(DE-Juel1)PGI-1-20110106