000201504 001__ 201504
000201504 005__ 20210129215810.0
000201504 0247_ $$2doi$$a10.1080/10402004.2013.819541
000201504 0247_ $$2ISSN$$a0569-8197
000201504 0247_ $$2ISSN$$a1040-2004
000201504 0247_ $$2ISSN$$a1547-357X
000201504 0247_ $$2ISSN$$a1547-397X
000201504 0247_ $$2WOS$$aWOS:000324614500012
000201504 037__ $$aFZJ-2015-03799
000201504 041__ $$aEnglish
000201504 082__ $$a620
000201504 1001_ $$0P:(DE-HGF)0$$aLyashenko, I. A.$$b0$$eCorresponding Author
000201504 245__ $$aHysteresis Behavior in the Stick–Slip Mode at the Boundary Friction
000201504 260__ $$aLondon$$bTaylor and Francis$$c2013
000201504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435237558_9496
000201504 3367_ $$2DataCite$$aOutput Types/Journal article
000201504 3367_ $$00$$2EndNote$$aJournal Article
000201504 3367_ $$2BibTeX$$aARTICLE
000201504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201504 3367_ $$2DRIVER$$aarticle
000201504 520__ $$aA tribological system is considered that consists of two atomically smooth solid surfaces separated by an ultrathin lubricant film. A thermodynamic model based on the Landau theory of phase transitions is built that describes the behavior of this system in the boundary friction mode. The free energy density for an ultrathin lubricant film is given in the form of expansion in series in terms of the powers of order parameter that is reduced to the shear modulus of the lubricant. The kinetics of the system is studied on the basis of a model describing first-order phase transitions between kinetic modes of friction. It is shown that in the presence of spring between the external drive and block the width of temperature hysteresis increases versus fixed coupling.
000201504 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201504 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201504 7001_ $$0P:(DE-HGF)0$$aKhomenko, A. V.$$b1
000201504 7001_ $$0P:(DE-HGF)0$$aZaskoka, A. M.$$b2
000201504 773__ $$0PERI:(DE-600)2092262-0$$a10.1080/10402004.2013.819541$$gVol. 56, no. 6, p. 1019 - 1026$$n6$$p1019 - 1026$$tTribology transactions$$v56$$x1547-397X$$y2013
000201504 909CO $$ooai:juser.fz-juelich.de:201504$$pVDB
000201504 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201504 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201504 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201504 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201504 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201504 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201504 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201504 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201504 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201504 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201504 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201504 980__ $$ajournal
000201504 980__ $$aVDB
000201504 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201504 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201504 980__ $$aUNRESTRICTED
000201504 981__ $$aI:(DE-Juel1)PGI-1-20110106