
Comment on ‘‘Friction Between a Viscoelastic Body
and a Rigid Surface with Random Self-Affine
Roughness’’

In their Letter, Li et al. [1] present a calculation of the

friction between a viscoelastic body and a rigid surface

with self-affine fractal roughness. The calculation pre-

sented is for a 1D array of springs with damper in contact

with a 1D rigid line profile. It is based on the ‘‘method of

reduction of dimensionality’’ (MRD). The authors have

claimed in the past that this method is exact (or nearly

exact [2]), and their discussion and the fact that all quan-

tities are reported in SI units suggest that their model is

applicable to real-world realizations of elastomers, such as

rubber. However, we have recently shown that the MRD

fails even qualitatively for randomly rough surfaces [3]. To

demonstrate this we compare the predictions of the MRD

with numerically exact results for the full 3D problem

(with 2D surfaces), obtained as described in Refs. [3,4].

In Fig. 1 we show the calculated fractional contact area

A=A0 as a function of the squeezing pressure for elastic

solids. We present results for two surfaces with the same

root-mean-square slope. The red and blue squares are the

result of a numerical exact study. The red and blue solid

lines are the predictions using the MRD. Note that AðpÞ
approaches A0 much faster in the MRD than in the numeri-

cally exact theory. We attribute this failure to describe the

contact mechanics correctly to the incorrect treatment of

the elastic coupling between the asperity contact regions.

The authors focus on the high-load casewhere the contact

area approaches complete contact [1]. However, for this

limiting case the 1D mapping approach is particularly

inaccurate (see Fig. 1). There are several other points where

the authors of Ref. [1] make unphysical assumptions. First,

rubber friction for sliding velocities above �1 mm=s is

strongly influenced by the flash temperature. That is, the

local energy dissipation in asperity contact regions results

in local temperature increase. Since the rubber viscoelastic

modulus is extremely temperature dependent (a 5 K

increase in temperature can shift the viscoelastic spectrum

by one decade in frequency) this has a crucial influence on

the rubber friction as discussed in detail in Ref. [5]. In

Figs. 2–4 in Ref. [1] the friction is calculated in the range

1 cm=s–100 m=s, and in this velocity range the flash tem-

perature, not included in the treatment in Ref. [1], will

dominate the frictional behavior. Frictional heating is also

the reason for whyAmonton’s friction law is often not valid

for rubber friction: increasing the load increases the fric-

tional heating which tends to reduce the rubber friction.

Indeed, experiments performed at very low sliding velocity,

where frictional heating is not important, usually exhibit

(for rough surfaces) a load-independent kinetic friction

coefficient [6]. The fact that the friction coefficient � ¼
F=FN becomes dependent on loadFN when the contact area

approaches complete contact is trivial since F must satu-

rate. This holds for all materials.

Other points not addressed by the authors are the

magnitude and origin of the short-wavelength cutoff [5],

and also the contribution from the area of real contact,

which in fact dominates the friction at very low sliding

speeds [7,8]. In conclusion, the Letter by Li et al. [1]

does not incorporate the relevant effects for the friction

between a viscoelastic body and a rigid surface with

random self-affine fractal roughness.
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and V. L. Popov, Phys. Rev. Lett. 111, 034301 (2013).

[2] V. L. Popov, Friction 1, 41 (2013).

[3] I. A. Lyashenko, L. Pastewka, and B.N. J. Persson, Tribol.

Lett. 52, 223 (2013).

[4] L. Pastewka, N. Prodanov, B. Lorenz, M.H. Müser, M.O.
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FIG. 1 (color online). The area of real contact A in units of the

nominal contact area A0 as a function of the squeezing pressure

p in units of the effective elastic modulus E�. For self-affine

fractal surfaces with H ¼ 0:7 and rms slope 0.1. The surfaces

have the small and large wave vector cutoff q0 ¼ 1 and q1 ¼
4096, respectively, and the roll-off wave vector qr ¼ 1 (blue

curves) and qr ¼ 8 (red curves).
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