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Contact electrification and the work of adhesion
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We present a general theory for the contribution from contact electrification to the work nec-
essary to separate two solid bodies. The theory depend on the surface charge density correlation
function (o(x)o(0)) which we deduce from Kelvin Force Microscopy (KFM) maps of the surface
electrostatic potential. For silicon rubber (polydimethylsiloxane, PDMS) we discuss in detail the
relative importance of the different contributions to the observed work of adhesion.

When two solid objects are removed after adhesional or
frictional contact, they will in general remain charged[1-
3]. At the macroscopic level charging usually manifests
itself as spark discharging upon contact with a third
(conducting) body, or as an adhesive force. The long-
range electrostatic force resulting from charging is im-
portant in many technological processes such as pho-
tocopying, laser printing, electrostatic separation meth-
ods, and sliding-triboelectric nanogenerators based on in-
plane charge separation[4]. Contact charging is also the
origin of unwanted effects such as electric shocks, explo-
sions or damage of electronic equipments.

Contact electrication is one of the oldest areas of
scientific study, originating more than 2500 years ago
when Thales of Miletus carried out experiments showing
that rubbing amber against wool leads to electrostatic
charging[5]. In spite of its historical nature and practical
importance, there are many not well understood prob-
lems related to contact electrification, such as the role of
surface roughness[6-8], surface migration[9] and contact
de-electrification[10].

The influence of contact electrification on adhesion has
been studied in pioneering work by Derjaguin et al[11, 12]
and by Roberts[13]. These studies, and most later stud-
ies, have assumed that removing the contact between
two bodies results in the bodies having uniform surface
charge distributions of opposite sign. However, a very
recent work[14-16] has shown that the bodies in gen-
eral have surface charge distributions which vary rapidly
in space (on the sub-micrometer scale) between positive
and negative values, and that the net charge on each ob-
ject is much smaller (sometimes by a factor of ~ 1000)
than would result by integrating the absolute value of
the fluctuating charge distribution over the surface area
of a body.

Contact electrification occurs even between solids
made from the same material[14]. This has been demon-
strated for silicon rubber (PDMS). If two rubber sheets
in adhesive contact (contact area A) are separated, they
obtain net charges +@ of opposite sign. However, as dis-
cussed above, each surface has surface charge distribu-
tions fluctuating rapidly between positive and negative
values, with magnitudes much higher than the average

~——Go (X!Y)

«— Op (X,y)

FIG. 1: After separation the bottom solid has the surface
charge distribution oo (x) and the top solid the surface charge
distribution —oo(x).

surface charge densities +(J/A. The net charge scales
with the contact surface area as Q ~ A2, as expected
based on a picture where the net charge results from ran-
domly adding positively and negatively charged domains
(with individual area AA) on the surface area A: when
N = AJAA >> 1, we expect from statistical mechanics
that the net charge on the surface A is proportional to
N2 as observed[14]. Note that in the thermodynamic
limit, A — oo, the net surface charge density Q/A = 0.

In this letter we will present an accurate calculation
of the contribution from contact electrification to the
work of adhesion to separate two solids. The same prob-
lem has been addressed in a less accurate approach by
Brérmann et al[17]. They assumed that the charged do-
mains formed a mosaic pattern of squares, where each
nearby square has charge of opposite sign but of equal
magnitude. To this problem they applied an approximate
procedure to obtain the contribution to the work of ad-
hesion from charging. In this letter we will present a gen-
eral theory, where the surface charge distribution o(x) is
characterized by the density-density correlation function
(o(x)c(0)), the power spectrum of which can be deduced
directly from Kelvin Force Microscopy (KFM) potential
maps. We find that for polymers the contact electrifica-
tion may contribute a non-negligible amount to the ob-
served work of adhesion. However, more KFM measure-
ments at smaller tip-substrate separation are necessary
to confirm the conclusion presented below.

We will calculate the force between the two charged



solids when the surfaces are separated by the distance
d, see Fig. 1. The lower surface has the surface charge
density oo (x), where x = (z,y) is the in-plane coordinate,
and the upper surface the surface charge density —og(x).
We write the electric field as E = —V¢ so that the electric
potential ¢ satisfies V2¢ = 0 everywhere except for z = 0
and z = d. We write

oo(x) = fd2q o(q)e’ ™™,

The electrostatic stress tensor

1 1
Uij = E (ElEJ - §E25”) .

Here we are interested in the zz-component:

1
azzzg(Ef—Eﬁ). (1)

In the space between the surfaces the electric potential:
o= [ @aloo(@)e™ + ou(a)er] e

where q = (¢4, ¢y) and x = (z,y) are 2D vectors. Thus
for z =0:

E.= [ dqalon(@-or(@lem™  (2)
and
By - [ da(-ia) [6o(a) + (@] €™ (3)

Using (1), (2) and (3) gives

[z oo =2mRe [ i Fon@si(a). ()

We now calculate ¢o(q) and ¢1(q). We write the electric
potential ¢(q, z) as:

¢ = doe” " + gre?”

for 0<z<d,

¢ = pre?”

for z<0,

b =¢se7 D for z>d.

Since ¢ must be continuous for z = 0 and z = d we get:

Qo + @1 = P2 (5)

doe” 1 + g1 = ¢s. (6)

Let ¢p and €1 be the dielectric function of the region be-
tween the bodies (0 < z < d) and in the bodies (z < 0 and
z > d), respectively. In our application the space between
the bodies is filled with non-polar gas and €y » 1. From
the boundary conditions €FE,(0%) — €1 E,(-0%) = 47mop

and €1 E,(d+0%) - eFE.(d-0") = -4mop, and using (5)
and (6), we get:

2
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2
gdoe "+ gret? = - g
q

where 0 = 092/(e1+€0) and g = (e1—€p)/(€1+¢€p). Solving
these equations gives:

_27T o

bo = ¢ = e .

q 1+gead’
Using these equations in (4) gives

e

(1+ge-ad)?

(7)

where we have performed an ensemble average denoted

by {(..).
Consider the correlation function:

@) = a7 [ Eodal o)),

()= [ da (0..) = 2n)* [ d*q (o(a)l?)

Assuming that the statistical properties of the surface
charge distribution are translational invariant we get:

(o(x)o(x")) = (o(x~x")o(0))
and

@) = G [ daloGa(@)es>

where Ay is the surface area. If & = (0(x)) denote the
average surface charge density, then we define the charge
density power spectrum:

Caola) = Gz [ al[oG0) - )[o(0) - )™, (5)

Using this definition we get:

2, A
(@) = 7553

[Coo (@) +3°5(a)]. (9)

Substituting (9) in (7) gives

e~ad

F.) = 21 Ag5? + 2 A fd2 Coo(q)—— .
< ) 0 0 q (q) (1 +ge“1d)2

We expect the statistical properties of the surface charge
distribution to be isotropic which imply that Cy, (q) only
depends on the magnitude ¢ = |q|. This gives:

e

(Fz(d)):27TA05—2+(277)2A0qu qcm(q)m.



The first term in this expression is the attraction between
the surfaces due to the (average) uniform component of
the charge distribution which, as expected, is indepen-
dent of the separation between the surfaces (similar to a
parallel condenser). The second term is the contribution
from the fluctuating components of the surface charge
distribution. The contribution to the work of adhesion
from the surface charge is given by:

d
U:/ dz (F.(2)) = 2nAy2d
0

w(r) Ao [ da oConla) ["az (10)

ge qz)

The first term increases without limit as the surfaces are
separated, and we will not include this term in the work
of adhesion. For bodies of finite size the expression given
above for the contribution from the net charging is of
course only valid for separations smaller than the linear
size of the bodies (i.e. d < L, where Ay = L?). The
contribution to the work of adhesion from the second
term in (10) (for d — o0) is:
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Note that the integral

[ 4 Cal@) = (fo(x) ~01") = (20?)  (12)

is the mean of the square of the fluctuating surface charge
distribution. Using this equation we can write:
21 (Ao?)

Wch = ———

l+g (q)

(13)
where

Io" dq qCo0(q)
fooo dq Caa(Q) '

The study above is for the limiting case where the sur-
faces separate so fast that no decay in the surface charge
distribution takes place before the separation is so large
as to give a negligible interaction force. Experiments[15]
have shown that the charge distribution decay with in-
creasing time as exp(—t/7), where the relaxation time
7~ 10% s depends on the atmospheric condition (e.g., hu-
midity and concentration of ions in the surrounding gas).
Taking into account the decay in the surface charge dis-
tribution, and assuming z = vt (where v is the normal
separation velocity) we need to replace the integral over

z in (10) with:
= / dz
0

{q) = (14)

67215/7'

%) efqz
f(q,v) = fo dzm

ef(qz+2z/v7')
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and (11) becomes

wa = (2m)? [ da aCoo(@)f(@v). (15)

In the limit v » oo we have f — 1/[¢(1 + g)] and in this

limit (15) reduces to (13). In the opposite limit of very

small surface separation velocity, f - v7/[2(1 +¢)?] and

in this limit

vriAc?)
(1+9)?

Note that this expression is of the form (13) with 1/(q)
replaced by v7/[2(1 + g)]. Since typically 7 ~ 10° s and
(1+g)~1and (g) » q1 ~ 10° m™* (where g; is defined be-
low) we get ve = 2(1+9)/({g)7) » 1072 m/s. In most ap-
plications we expect the separation velocity in the vicin-
ity of the crack tip v >> v, and in this case the limiting
equation (13) holds accurately. Note, however, that the
separation velocity v may be much smaller than the crack
tip velocity.

In the KFM measurement the local potential at some
fixed distance d above the surface is measured, rather
than the surface charge density. From the measured data
the potential power spectrum

(16)

Wch =

1+ )2f dg qCo0(q) =

Coola) = gz [ 4000 - 3)[9(0) - 3])e"*

can be directly obtained. However, we can relate the
potential to the charge density:

o(a) = Zo(q)e .
q

Thus

(2 )?

The results presented above is in Gaussian units. To
obtain (17) in ST units we must multiply the right-hand-
side with (47eg)?, where ¢y = 8.8542 x 10712 CV~1m™!.
Thus:

Coo(q) = ——5Cos(q)e’™ (17)

Coo(q) = 45?)‘120@5@5((1)62(1(1- (18)

To get (11) in SI units we must multiply the right-hand-
side by (4meg) ™t

weh = m A " dq Coo(q). (19)

We now analyze experimental data involving elasti-
cally soft solids with smooth surfaces, where the initial
contact between the solids is complete due to the adhe-
sion between the solids. In Ref. [15] several such sys-
tems where studied and here we focus on PDMS rub-
ber against PDMS. After breaking the adhesive contact
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FIG. 2: (a) The voltage power spectrum Cye and (b) the
surface charge density power spectrum C,, as a function of
the wavevector. The results have been calculated from the
measured (KFM) voltage maps for PDMS/PDMS (blue) and
PDMS/polycarbonate (PC) (red)[15].

between two sheets of PDMS (which involves interfacial
crack propagation) the electrostatic potential a distance
d above one of the surfaces was probed using KFM mea-
surements. From the measured potential map we have
calculated the potential power spectrum Cyg(¢q) and then
from (18) the charge density power spectrum Ci,,(q).
The measurements where done at the tip-substrate sepa-
ration d ~ 1077 m, and since the electric potential from a
surface charge density distribution with the wavevector
q decay as exp(—qd) with the distance d from the sur-
face, the KFM is effectively limited to probing the sur-
face charge distribution with wavevector g < 1/d. In Fig.
2 we show both power spectra’s for ¢ < 2x 107 m~!. Note
that the charge density power spectrum appears to sat-
urate for large wavevector, say ¢ > qo, with go ~ 10" m™*.
This result follows if, as expected, the process of creating
surface charges is uncorrelated in space at short length
scales. In that case (o(x)o(0)) ~ d(x) and using (8)
this gives Cy,(q) = const. The fact that Cyr(q) decays
for decreasing ¢ for ¢ < go ~ 107 m™' implies that at
some length scale \g = 2m/qo ~ 0.6 pm the charge dis-
tribution becomes correlated. The physical reason for
this may relate to inhomogenities on the PDMS surface,
e.g., domains of slightly varying PDMS composition or
cross-linking density. (Note: PDMS rubber is obtained
by mixing two high viscosity liquids and may exhibit in-

homogeneties at the micrometer scale, e.g., due to incom-
plete mixing.)

We assume that the charge density power spectrum
saturate for ¢ > go at C%, ~ 2.2 x 10723 C?/m? (see Fig.
2(b)). In this case from (19) we get wen ~ (g1 —g0)C2, /€0,
where ¢; is a large wavevector cut-off of order 27/\q,
where \; is of order the average separation between the
surface charges (which we assume to be point charges of
magnitude +e, where e is the electron charge). Here we
have used that 7/[2(1 + g)] ~ 1. Since gop ~ 10" m™! <<
q1 we get wen » q1C2_ Jeg ~ 0.002 J/m?, where we have
assumed ¢; = 10° m™'. This value is smaller than the
measured work of adhesion during adiabatic (very slow)
separation of the surfaces where we, ~ 0.05 J/m?. Using
(12) we get the mean square charge fluctuation (Ac?) =~
7q3CY% ~ 7x 1075 C%2/m? or the rms charge fluctuation
~ 1 pC/ecm? which is similar to what was estimated by
Baytekin et al[15].

The analysis above is based on the assumption that
the surface charge density power spectrum saturates at a
value C9_ ~2.2x 1072 C?/m? for large wavevectors, and
that the cut-off ¢; ~ 10° m™!, corresponding to an aver-
age separation between the point charges of about 6 nm.
This hypothesis should be tested by performing KFM
measurements to smaller tip-substrate separations. The
number of surface charges, which determines the cut-off
q1 in the study above, may also be probed by surface
reaction experiments, such as bleaching experiments re-
ported on in Ref. [16].

The value of ¢; used above corresponds to A% ~ 3 x
106 electrons per m~2. If these charges would result
from breaking of the PDMS polymer chains, it would
require at least (3 x 1016 m™2) x (3 eV) ~ 0.015 J/m?,
which is smaller than the observed work of adhesion, but
not negligible. For PDMS the observed work of adhesion
at low separation velocity equals w ~ 0.05 J/m?). At
low crack-tip velocities the viscoelastic energy dissipation
at the crack tip, and other non-equilibrium effects are
negligible, the work of adhesion is usually assumed to
result from the van der Waals interaction between the
surfaces at the interface, but the study above indicate
that there may be non-negligible contributions both from
the bond-breaking process which generates the surface
charges, and from the contact electrification itself.

To summarize, we have derived a general expression
for the contribution to the work of adhesion from contact
electrification, and we have shown that for PDMS (and
for polymers in general) the contact electrification and
the associated bond-breaking may contribute in a non-
negligible way to the observed work of adhesion.
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