001     201509
005     20210129215811.0
024 7 _ |a 10.1038/ncomms6892
|2 doi
024 7 _ |a 2128/8849
|2 Handle
024 7 _ |a WOS:000347686900001
|2 WOS
024 7 _ |a altmetric:2998347
|2 altmetric
024 7 _ |a pmid:25520236
|2 pmid
037 _ _ |a FZJ-2015-03804
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Kohara, Shinji
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Atomic and electronic structures of an extremely fragile liquid
260 _ _ |a London
|c 2014
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435132655_21684
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ​ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ​ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ​ZrO2 is an extremely fragile liquid.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Akola, Jaakko
|0 P:(DE-Juel1)130496
|b 1
|u fzj
700 1 _ |a Patrikeev, Leonid
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ropo, Matti
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ohara, Koji
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Itou, Masayoshi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fujiwara, Akihiko
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yahiro, Jumpei
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Okada, Junpei T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ishikawa, Takehiko
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mizuno, Akitoshi
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Masuno, Atsunobu
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Watanabe, Yasuhiro
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Usuki, Takeshi
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1038/ncomms6892
|g Vol. 5, p. 5892 -
|0 PERI:(DE-600)2553671-0
|p 5892
|t Nature Communications
|v 5
|y 2014
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201509/files/ncomms6892.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201509
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130496
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21