000201512 001__ 201512
000201512 005__ 20210129215812.0
000201512 0247_ $$2doi$$a10.1088/0953-8984/26/1/015009
000201512 0247_ $$2ISSN$$a0953-8984
000201512 0247_ $$2ISSN$$a1361-648X
000201512 0247_ $$2WOS$$aWOS:000328194600010
000201512 037__ $$aFZJ-2015-03807
000201512 041__ $$aEnglish
000201512 082__ $$a530
000201512 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding Author$$ufzj
000201512 245__ $$aThermal interface resistance: cross-over from nanoscale to macroscale
000201512 260__ $$aBristol$$bIOP Publ.$$c2014
000201512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435240827_21640
000201512 3367_ $$2DataCite$$aOutput Types/Journal article
000201512 3367_ $$00$$2EndNote$$aJournal Article
000201512 3367_ $$2BibTeX$$aARTICLE
000201512 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201512 3367_ $$2DRIVER$$aarticle
000201512 520__ $$aIn a recent work Gotsmann and Lantz have observed that the thermal interface conductivity for a nano-sized nominal contact area is proportional to the normal contact pressure in a wide pressure range, with a prefactor which is typically ~103 higher than observed for the same materials at the macroscale. Here I discuss the cross-over from the nanoscale to the macroscale. I show that for macroscopic solids the spreading resistance will dominate the interfacial resistance in most cases.
000201512 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201512 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201512 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/26/1/015009$$gVol. 26, no. 1, p. 015009 -$$n1$$p015009$$tJournal of physics / Condensed matter$$v26$$x1361-648X$$y2014
000201512 8564_ $$uhttps://juser.fz-juelich.de/record/201512/files/0953-8984_26_1_015009.pdf$$yRestricted
000201512 8564_ $$uhttps://juser.fz-juelich.de/record/201512/files/0953-8984_26_1_015009.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201512 909CO $$ooai:juser.fz-juelich.de:201512$$pVDB
000201512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201512 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201512 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201512 9141_ $$y2015
000201512 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201512 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201512 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201512 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201512 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201512 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201512 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201512 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201512 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201512 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201512 980__ $$ajournal
000201512 980__ $$aVDB
000201512 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201512 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201512 980__ $$aUNRESTRICTED
000201512 981__ $$aI:(DE-Juel1)PGI-1-20110106