000020154 001__ 20154
000020154 005__ 20210129210742.0
000020154 0247_ $$2pmid$$apmid:20832489
000020154 0247_ $$2DOI$$a10.1016/j.neuroimage.2010.08.075
000020154 0247_ $$2WOS$$aWOS:000285486000034
000020154 0247_ $$2altmetric$$aaltmetric:4887693
000020154 037__ $$aPreJuSER-20154
000020154 041__ $$aeng
000020154 082__ $$a610
000020154 084__ $$2WoS$$aNeurosciences
000020154 084__ $$2WoS$$aNeuroimaging
000020154 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000020154 1001_ $$0P:(DE-Juel1)VDB67318$$aAxer, M.$$b0$$uFZJ
000020154 245__ $$aA novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain
000020154 260__ $$aOrlando, Fla.$$bAcademic Press$$c2011
000020154 300__ $$a1091 - 1101
000020154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020154 3367_ $$2DataCite$$aOutput Types/Journal article
000020154 3367_ $$00$$2EndNote$$aJournal Article
000020154 3367_ $$2BibTeX$$aARTICLE
000020154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020154 3367_ $$2DRIVER$$aarticle
000020154 440_0 $$04545$$aNeuroImage$$v54$$x1053-8119$$y2
000020154 500__ $$3POF3_Assignment on 2016-02-29
000020154 500__ $$aWe would like to thank M. Cremer, F. Kocaer and H. Mohlberg, Research Centre Julich, Germany, and U. Blohm and U. Opfermann, University Dusseldorf, Germany, for excellent technical assistance and preparation of the histological sections. Our work was partly supported by the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology ("Human Brain Model").
000020154 520__ $$aSignal transmission between different brain regions requires connecting fiber tracts, the structural basis of the human connectome. In contrast to animal brains, where a multitude of tract tracing methods can be used, magnetic resonance (MR)-based diffusion imaging is presently the only promising approach to study fiber tracts between specific human brain regions. However, this procedure has various inherent restrictions caused by its relatively low spatial resolution. Here, we introduce 3D-polarized light imaging (3D-PLI) to map the three-dimensional course of fiber tracts in the human brain with a resolution at a submillimeter scale based on a voxel size of 100 μm isotropic or less. 3D-PLI demonstrates nerve fibers by utilizing their intrinsic birefringence of myelin sheaths surrounding axons. This optical method enables the demonstration of 3D fiber orientations in serial microtome sections of entire human brains. Examples for the feasibility of this novel approach are given here. 3D-PLI enables the study of brain regions of intense fiber crossing in unprecedented detail, and provides an independent evaluation of fiber tracts derived from diffusion imaging data.
000020154 536__ $$0G:(DE-Juel1)FUEK255$$2G:(DE-HGF)$$aNeurowissenschaften (FUEK255)$$cFUEK255$$x0
000020154 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x1
000020154 588__ $$aDataset connected to Web of Science, Pubmed
000020154 65320 $$2Author$$aConnectome
000020154 65320 $$2Author$$aHuman brain
000020154 65320 $$2Author$$aMethod
000020154 65320 $$2Author$$aPolarized light imaging
000020154 65320 $$2Author$$aTractography
000020154 65320 $$2Author$$aSystems biology
000020154 650_2 $$2MeSH$$aBirefringence
000020154 650_2 $$2MeSH$$aBrain: ultrastructure
000020154 650_2 $$2MeSH$$aBrain Mapping: methods
000020154 650_2 $$2MeSH$$aHumans
000020154 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000020154 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000020154 650_2 $$2MeSH$$aNerve Fibers: ultrastructure
000020154 650_2 $$2MeSH$$aNeural Pathways: anatomy & histology
000020154 650_7 $$2WoSType$$aJ
000020154 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b1$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)131642$$aGrässel, D.$$b2$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)VDB1883$$aPalm, C.$$b3$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)VDB261$$aDammers, J.$$b4$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)VDB71120$$aAxer, H.$$b5$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)VDB2211$$aPietrzyk, U.$$b6$$uFZJ
000020154 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b7$$uFZJ
000020154 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2010.08.075$$gVol. 54, p. 1091 - 1101$$p1091 - 1101$$q54<1091 - 1101$$tNeuroImage$$v54$$x1053-8119$$y2011
000020154 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2010.08.075
000020154 909CO $$ooai:juser.fz-juelich.de:20154$$pVDB
000020154 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000020154 9141_ $$y2011
000020154 9132_ $$0G:(DE-HGF)POF3-579H$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vAddenda$$x0
000020154 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x1
000020154 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000020154 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000020154 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x2
000020154 970__ $$aVDB:(DE-Juel1)135265
000020154 980__ $$aVDB
000020154 980__ $$aConvertedRecord
000020154 980__ $$ajournal
000020154 980__ $$aI:(DE-Juel1)INM-4-20090406
000020154 980__ $$aI:(DE-Juel1)INM-1-20090406
000020154 980__ $$aI:(DE-Juel1)INM-2-20090406
000020154 980__ $$aUNRESTRICTED
000020154 981__ $$aI:(DE-Juel1)INM-1-20090406
000020154 981__ $$aI:(DE-Juel1)INM-2-20090406