000201544 001__ 201544
000201544 005__ 20240610120420.0
000201544 0247_ $$2doi$$a10.1016/j.ultramic.2013.06.023
000201544 0247_ $$2ISSN$$a0304-3991
000201544 0247_ $$2ISSN$$a1879-2723
000201544 0247_ $$2WOS$$aWOS:000324474900021
000201544 037__ $$aFZJ-2015-03838
000201544 041__ $$aEnglish
000201544 082__ $$a570
000201544 1001_ $$0P:(DE-HGF)0$$aSomodi, P. K.$$b0
000201544 245__ $$aFinite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography
000201544 260__ $$aAmsterdam$$bElsevier Science$$c2013
000201544 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435306627_21656
000201544 3367_ $$2DataCite$$aOutput Types/Journal article
000201544 3367_ $$00$$2EndNote$$aJournal Article
000201544 3367_ $$2BibTeX$$aARTICLE
000201544 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201544 3367_ $$2DRIVER$$aarticle
000201544 520__ $$aTwo-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices.
000201544 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000201544 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201544 7001_ $$0P:(DE-HGF)0$$aTwitchett-Harrison, A. C.$$b1
000201544 7001_ $$0P:(DE-HGF)0$$aMidgley, P. A.$$b2
000201544 7001_ $$0P:(DE-HGF)0$$aKardynał, B. E.$$b3
000201544 7001_ $$0P:(DE-HGF)0$$aBarnes, C. H. W.$$b4
000201544 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5$$eCorresponding Author$$ufzj
000201544 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2013.06.023$$gVol. 134, p. 160 - 166$$p160 - 166$$tUltramicroscopy$$v134$$x0304-3991$$y2013
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.pdf$$yRestricted
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.gif?subformat=icon$$xicon$$yRestricted
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201544 8564_ $$uhttps://juser.fz-juelich.de/record/201544/files/1-s2.0-S0304399113001897-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201544 909CO $$ooai:juser.fz-juelich.de:201544$$pVDB
000201544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201544 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201544 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201544 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201544 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201544 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201544 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201544 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201544 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201544 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201544 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201544 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201544 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201544 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201544 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201544 920__ $$lyes
000201544 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201544 980__ $$ajournal
000201544 980__ $$aVDB
000201544 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201544 980__ $$aUNRESTRICTED
000201544 981__ $$aI:(DE-Juel1)ER-C-1-20170209