| Home > Publications database > Electric field distribution in biased GaAs microstructures with field-pinning layers > print |
| 001 | 201571 | ||
| 005 | 20210129215829.0 | ||
| 024 | 7 | _ | |a 10.1016/j.spmi.2012.08.009 |2 doi |
| 024 | 7 | _ | |a 0749-6036 |2 ISSN |
| 024 | 7 | _ | |a 1096-3677 |2 ISSN |
| 024 | 7 | _ | |a WOS:000311020200010 |2 WOS |
| 037 | _ | _ | |a FZJ-2015-03865 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Schmidt, Jan C. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Electric field distribution in biased GaAs microstructures with field-pinning layers |
| 260 | _ | _ | |a Oxford [u.a.] |c 2012 |b Elsevier Science, Academic Press |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1435312387_10130 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a Field-pinning layers are an approach to improve the homogeneity of the electric field in a biased semiconductor structure of length above the Kroemer criterion. Building a THz Bloch oscillator with such a structure requires superlattice regions. Nevertheless, GaAs layers are investigated here. We compare different periodic structures (alternating transit and field-pinning layers) via simulating the field distribution. It is shown that the development of propagating Gunn domains is suppressed when field-pinning layers are included, but the homogeneity of the field is still not satisfying for the purpose of building a Bloch gain THz source. Depending on the temperature, intra- and inter-period inhomogeneities occur. |
| 536 | _ | _ | |a 421 - Frontiers of charge based Electronics (POF2-421) |0 G:(DE-HGF)POF2-421 |c POF2-421 |f POF II |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |a Lisauskas, Alvydas |0 P:(DE-HGF)0 |b 1 |e Corresponding Author |
| 700 | 1 | _ | |a Roskos, Hartmut G. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Demarina, Nataliya |0 P:(DE-Juel1)125576 |b 3 |e Corresponding Author |
| 773 | _ | _ | |a 10.1016/j.spmi.2012.08.009 |g Vol. 52, no. 6, p. 1143 - 1154 |0 PERI:(DE-600)1471791-8 |n 6 |p 1143 - 1154 |t Superlattices and microstructures |v 52 |y 2012 |x 0749-6036 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/201571/files/1-s2.0-S0749603612002352-main.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:201571 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)125576 |
| 913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|