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The strength and stability of frictional interfaces, ranging from tribological systems to earthquake faults, are

intimately related to the underlying spatially extended dynamics. Here we provide a comprehensive theoretical

account, both analytic and numeric, of spatiotemporal interfacial dynamics in a realistic rate-and-state friction

model, featuring both velocity-weakening and velocity-strengthening behaviors. Slowly extending, loading-rate-

dependent creep patches undergo a linear instability at a critical nucleation size, which is nearly independent

of interfacial history, initial stress conditions, and velocity-strengthening friction. Nonlinear propagating rupture

fronts—the outcome of instability—depend sensitively on the stress state and velocity-strengthening friction.

Rupture fronts span a wide range of propagation velocities and are related to steady-state-front solutions.
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Introduction. Predicting the strength and stability of fric-

tional interfaces is an outstanding problem, relevant to a

broad range of fields—from biology and nanomechanics

to geophysics. Recent modeling efforts [1–20] and novel

laboratory experiments [21–32] have revealed complex spa-

tiotemporal dynamics that precede and accompany interfacial

failure. In particular, frictional instabilities that mark the

transition from creep-like motion to rapid slip and a variety

of emerging rupture fronts have been observed. Quantitatively

understanding these complex dynamics and their dependence

on geometry, external forcing, system history, and constitutive

behavior of the frictional interface remains an important

challenge.

In this Rapid Communication we theoretically study a

simple, yet realistic, quasi-1D rate-and-state model [33,34]

in which friction is velocity-weakening at low slip velocities

and crosses over to velocity-strengthening at higher velocities

[35–37]. Using combined analytic and numeric tools we

elucidate the physics of a sequence of instabilities at a

frictional interface. In particular, we study the dynamics of

slowly extending creep patches [38–40], their stability, and

the emerging nonlinearly propagating rupture fronts.

The model. The friction model we study is the realistic

rate-and-state model introduced in [37], which is briefly

presented here. The spatially extended interface between two

dry macroscopic bodies is composed of an ensemble of contact

asperities whose total area Ar is much smaller than the nominal

contact area An [41]. The normalized real contact area, A ≡

Ar/An ≪ 1, is given as A(φ) = [1 + b ln (1 + φ/φ∗)] σ/σH ,

where φ is a state variable quantifying the typical time

passed since the contact was formed (i.e., its “age”). σ is

the normal stress, σH is the hardness, b is a dimensionless

material parameter, and φ∗ is a short time cutoff [24,29]. The

frictional resistance stress τ is decomposed as τ = τ el + τ vis,

where τ el is related to elastic deformation of the contact

asperities and τ vis to their rheological response. The latter

is related to thermally activated processes and is given by

τ vis(v,φ) = η v∗A(φ) ln (1 + v/v∗) [5,42,43], where v is the

slip velocity, η is a viscous-friction coefficient, and v∗ is a

small velocity scale.

The dynamic evolution equations for the friction variables

take the form [5,34,37]

φ̇ = 1 − |v|
φ

D
g(τ,v),

(1)

τ̇ el =
µ0

h
A(φ)v − |v|

τ el

D
g(τ,v).

Here D is a characteristic slip distance, µ0 is the interfacial

elastic modulus, and h is the effective height of the interface.

To understand the role of g(τ,v), first set it to zero. Then,

the equations yield φ = t , which corresponds to the well-

established logarithmic aging of A(t), and an elasticity relation

τ el ≃ µ0A(t)u/h [where A(t) varies much slower than the

elastic response and u is the slip displacement; recall that

u̇ = v]. These relations describe the response of the interface in

the absence of irreversible slip. When g(τ,v) = 1, the second

terms on the right-hand side of Eqs. (1) describe the breakage

of contact asperities accompanied by irreversible slip over a

length D on a time scale D/v. Therefore, g(τ,v) plays the

role of an effective threshold for the onset of irreversible slip.

In [37], g(τ,v) described a sharp threshold in terms of the stress

τ . Here, we choose g(τ,v) ≡
√

1 + v2
0/v

2, with an extremely

small v0 = 10−9 m/s. Thus, |v| g(τ,v) changes from v0 for

v → 0 to |v| for v ≫ v0. Our results are insensitive to this

choice of g(τ,v).

Consider a rigid substrate and a long elastic body (in the x

direction) of height H (in the y direction) pressed against it

by a constant normal stress σ applied at y = H ; see Fig. 1(a).

The friction law formulated above describes the interface at

y = 0. The elastic body is described by Hooke’s law and its

force balance equation, in the limit of small H , reads

ρHü = Ḡ(ν)H∂xxu − τ, (2)

where ρ is the mass density and Ḡ(ν) is an effective elastic

modulus depending on Poisson’s ratio ν and proportional to

the shear modulus G [44]. In this quasi-1D approximation, σ

is space- and time-independent.

The material parameters we use below were extracted from

extensive experimental data of PMMA. We set D = 0.5 µm

and the rest of the parameters appear in [44]. The steady
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FIG. 1. (Color online) General phenomenology and creep patches. (a) The geometry and loading configuration studied here. (b) Steady-state

sliding friction vs slip velocity v (solid blue line). The dashed yellow line shows steady friction which is purely velocity-weakening. The dotted

purple line shows stronger-than-logarithmic (linear) strengthening. See text for details. (c) Spatiotemporal evolution of τ (x,t)/σ . The blue

regions correspond to the background stress τ = 300 kPa. (d) The tangential force per unit width fd (t). (e) Example of v(x,t), τ (x,t)/σ , and

A(x,t) of the creep patch at the time marked by a vertical dashed line in panel (c). (f) ccr vs xtip in log scale. The dashed line shows a slope of −1.

sliding friction curve [obtained by setting to zero the time

derivatives in Eqs. (1)] is shown in Fig. 1(b) (solid line). The

curve has a peak at extremely small slip velocities (related

to v0), which we believe to be a generic feature of friction,

though it is of no significance here [45,46]. Moreover, the curve

exhibits a crossover from velocity-weakening behavior to

velocity-strengthening behavior (at vm, here a few mm/s). This

feature has been experimentally observed in many materials

[47] and plays an important role below.

The initial conditions for the friction variables are repre-

sentative of laboratory experiments, τ el(x,t = 0) = 300 kPa

and φ(t = 0) = 1 s [28,29]. The existence of an initial stress

distribution τ el(x,t = 0) was shown to be a generic feature of

frictional systems [28], and—as also shown below—to affect

the subsequent failure dynamics. Additional shear stresses are

inhomogeneously applied to the system through moving its

trailing edge at x = 0 at a constant speed vd = 10 µm/s, again

typical to laboratory experiments [25,28,42]. The resulting

applied tangential force per unit thickness fd (t) is tracked.

Numerical results. We first characterize the phenomenology

of the model through numerical simulations (the spatially

discretized system of equations was integrated in time using

a standard ordinary differential equation solver in MATHE-

MATICA), a typical example of which is shown in Figs. 1(c)

and 1(d). fd (t) is shown in Fig. 1(d) to continuously curve

(after a short quasilinear increase) and to experience sharp,

discrete-like drops [25,48].

To better characterize this behavior, we focus on the

corresponding spatiotemporal dynamics of τ (x,t)/σ in the

color map in Fig. 1(c) [sharing the same time axis with Fig.

1(d)]. The continuous curving of fd (t) corresponds to the

propagation of a creep patch that extends from x = 0 into the

interface and decelerates continuously (marked with a white

arrow). When the creep patch reaches a certain size (marked

by the horizontal dashed line), at t ≃ 16 s, it loses stability,

and a much faster rupture front emerges and propagates

until it arrests at x ≃ 10 cm. The rupture front propagation,

responsible for the drop in fd (t) (marked by the black arrows in

both panels), appears as a vertical line in the color map because

of the enormous variation in the time scales involved, though

its velocity is finite (see below). A movie of the spatiotemporal

dynamics is available in the Supplemental Material [44].

When the rupture front arrests it leaves behind it an

inhomogeneous stress distribution with a rather localized peak

at the arrest location, which can be interpreted as the front tip.

At the same time, another creep patch initiates and extends

from the trailing edge until it loses stability at the same size
as before and again a much faster rupture front propagates,

collides with the previously arrested front tip, and continues to

propagate until it arrests deeper inside the interface (this time

at x ≃ 14 cm). This process repeats itself almost periodically,

though some heterogeneity appears (not discussed here).

Creep patches. A closer look at the creep patch is shown in

Fig. 1(e), which presents a snapshot of the spatial distribution

of the fields v(x,t), τ (x,t)/σ , and A(x,t) at t corresponding to

the vertical dashed line in Fig. 1(c) (prior to the instability). All

fields relax to their spatially homogeneous background values

at the same point (x ≃ 6 cm for that snapshot), which is the

boundary between slipping and nonslipping regions, denoted

by xtip. To compute the creep patch velocity ccr ≡ ẋtip, we

assume that its dynamics are quasistatic and therefore neglect

the inertial and viscous terms in Eq. (2). We further replace τ el

by its fixed point to obtain ḠH∂xxu ≃ µ0DA(φ)/h.

Transforming to a comoving coordinate ξ = x − ccrt and

estimating ∂xv ≃ vd/xtip, the above relation yields

ccr ≃ vd

ḠHh

µ0DA(φtip)

1

xtip

, (3)
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where φtip is an estimation of φ at the tip. This result shows that

the creep patch propagation is directly driven by the loading

as ccr is proportional to vd [48]. Possibly related loading-rate-

dependent creep patches were observed in [49]. Moreover,

Eq. (3) predicts that the creep patch decelerates as it extends,

its propagation velocity being inversely proportional to its size,

which is a property of the side-loading configuration. This

prediction is verified in Fig. 1(f). Finally, we note that while ccr

is significantly larger than the loading rate vd = 10 µm/s—in

the cm/s range for our parameters here [cf. Fig. 1(f)]—it is

still orders of magnitude slower than “slow” rupture [23,27,28]

and should not be confused with it.

Instability of creep patches (rupture nucleation). Rapid slip

nucleation (instability) at a critical size Lc has been extensively

discussed previously [2,22,49–51] and is understood to result

from a competition between frictional weakening and the

variation of the effective bulk stiffness with the patch size.

The present framework allows us to analyze the instability

very cleanly and carefully test the analytic predictions.

To analyze the stability of the creep patch we first note that

its slip velocity is small and belongs to the weakening branch

of the steady friction curve shown in Fig. 1(b). Therefore,

we rewrite Eq. (2) as ḠH∂xxu ≃ τ ≃ τss(v), where τss(v) is

the velocity-weakening steady-state friction branch. We then

introduce a displacement perturbation of the form δu(x,t) =

δu0 eikx+λt in the above relation to obtain

k2ḠHδu ≃ |∂τss/∂v| δv ≃ λ |∂τss/∂v| δu, (4)

resulting in an instability spectrum λ ∼ k2, in which larger

k-vector modes grow faster. The spectrum is regularized by

the intrinsic friction time scale, λ ≃ v/D, which yields for

the most unstable mode kc = 2π/Lc the following critical

wavelength:

Lc ≃ 2π

√

ḠHD

|∂τss/∂ ln v|
. (5)

The analysis above predicts that creep patches undergo

a linear instability when xtip = Lc, given in Eq. (5). This

prediction is tested in detail in Fig. 2. The dependence (and

independence) of Lc on various parameters in Eq. (5) is verified

in Fig. 2(a). A snapshot of the velocity distribution during

the initial growth of the instability is shown in Fig. 2(b).

Superimposing cos (2πx/Lc) (i.e., the real part of eikcx) on

it yields excellent agreement (see figure for details), which

demonstrates that this is indeed a linear instability. Finally, our

linear stability analysis predicts that λ ≃ vd/D ≃ (50 ms)−1,

where vd (the loading rate) is the maximal slip velocity in the

creep patch [cf. Fig. 1(e)]. Figure 2(c) shows that the instability

amplitude initially grows exponentially with a typical time of

26 ms, in favorable agreement with the predictions. A movie of

the instability is available in the Supplemental Material [44].

To conclude the discussion of the instability we note that

since |∂τss/∂ ln v| in the weakening regime is v-independent,

Lc in Eq. (5) is v-independent as well. Moreover, Lc is

independent of the stress state as is clearly demonstrated by

the horizontal dashed line in Fig. 1(c) (see below additional

results concerning this point). The connection between Eq. (5)

and available results in 2D is discussed in the Supplemental

Material [44].

FIG. 2. (Color online) Onset of instability. (a) The measured Lc

(in the simulation) vs the prediction [Eq. (5)]. The parameters varied

are shown in the legend (the dashed red line has a slope 1 and

goes through the origin). (b) Snapshot of v(x,t) near the onset of

instability [solid red line; t corresponds to the vertical line in (c)].

1 + cos (2πx/Lc), x-shifted and amplitude-scaled, is superimposed

(dashed blue line). (c) The instability grows exponentially with time

scale of 26 ms. vmax(t) is the instantaneous spatial maximum of v(x,t)

and tc is defined in Fig. 3.

Outcome of instability (rupture fronts). After an initial

exponential growth, the instability enters the nonlinear regime,

characterized by a steadily propagating rupture front that is

excited for a few tens of µs and is accompanied by significant,

much faster slip (see Fig. 3). What determines the rupture front

properties?

In [37] it was conjectured that transient rupture fronts

propagating under spatially inhomogeneous stress conditions

might be short-lived excitations of steady-state rupture fronts

propagating under homogeneous stress conditions. The latter

exist only in the presence of a nonmonotonic steady friction

law [cf. Fig. 2(b)] and span a continuous spectrum of

propagation velocities with a finite minimal value [37]. To

FIG. 3. (Color online) Outcome of instability. (a) High temporal

resolution of the dynamics of τ (x,t)/σ during instability (see movie

in the Supplemental Material [44]). tc is defined as the zero of

the time axis here (roughly at the onset of nonlinearity). (b)–(d)

A snapshot of the field distributions during rupture propagation at

a time corresponding to the vertical dashed line in panel (a) (solid

purple lines). The propagation velocity is c = 902 m/s. The dashed

blue lines are described in the text.
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FIG. 4. (Color online) Effect of velocity-strengthening and initial

stress. (a) The front location xtip during the first rupture event for

logarithmic velocity-strengthening (solid blue line) and for purely

velocity-weakening friction (dashed yellow line). The dotted red line

corresponds to the elastic wave speed. (b) xtip for linear strengthening.

Note the dramatic change in the time scale as compared to panel (a).

The dashed red line corresponds to c = 10 m/s. (c) Lc (dotted purple

line, right y axis) and c (solid blue line, left y axis) vs τ el(t = 0)/σ .

The dashed horizontal line is the elastic wave speed.

test this idea, we choose a steady-state-front solution whose

propagation velocity c is the same as in Fig. 3 (c = 902 m/s,

which is 32% of the elastic wave-speed cs =
√

Ḡ/ρ = 2783

m/s) and which penetrates an interface of the same “age”

(i.e., φ = 17.4 s). When superimposing it on the transient

front [solid purple lines in Figs. 3(b)–3(d)], we observe that

all fields exhibit reasonable agreement, including the detailed

distribution of τ (x,t)/σ and the typical slip velocity behind the

front, lending support to our conjecture. Currently we cannot

theoretically predict the selection (i.e., why this particular c

was selected), which might be a “soft selection” due to the

(weak) logarithmic velocity-strengthening.

To further test this conjecture, and explore the role played

by the velocity-strengthening branch in general, we study

two variants of our model, one in which friction is purely

velocity-weakening [cf. the dashed yellow line in Fig. 1(b)]

and one in which velocity-strengthening is linear in v [cf. the

dotted purple line in Fig. 1(b)] [26,35,36,47]. In the former

case, rupture propagates at the elastic wave speed cs , penetrates

much deeper into the interface, and results in a much larger

stress drop [see Fig. 4(a)]. In the latter case, rupture propagates

at a much slower velocity c ≃ 10 m/s ≪ cs [see Fig. 4(b)],

comparable to the smallest velocity member in the spectrum

of steady-state-front solutions [37,48]. We identify it as

“slow” rupture [23,27]. These results clearly indicate that the

existence and functional form of the velocity-strengthening

branch significantly affect rupture dynamics. This seems to

be directly related to the new experimental observations of

[52] and might also explain why models that do not include

velocity-strengthening friction typically feature only very fast

rupture events [10].

Finally, we study the effect of the initial stress level on the

onset of instability and the resulting rupture (for logarithmic

velocity-strengthening). Figure 4(c) shows that a prestress

τ el(t = 0) significantly affects the rupture velocity (and hence

the event’s magnitude), while Lc is almost unaffected [note

that at t = 0, τ el(t =0) is balanced by ∂xxu in Eq. (2)]. In

a geophysical context, this result seems to agree with the

statement that “the size of an event is determined by the

conditions on the fault segments the event is propagating into

rather than by the nucleation process itself” [2]. In addition, we

note that the variation of the rupture propagation velocity with

the prestress level resembles the recent experimental results

of [28] (cf. Fig. 3 therein).

The results described in this communication were obtained

in the quasi-1D limit of small H . The scaling structure of

the corresponding 2D results may be obtained through the

procedure described in the Supplemental Material [44]. While

we suspect that the qualitative nature of our results remains

unchanged in higher dimensions, quantitative aspects should

be carefully explored in future research.

Concluding remarks. In conclusion, we showed that creep

patches extending at frictional interfaces undergo a linear

instability at a critical nucleation size that is nearly independent

of the stress state and the presence of velocity-strengthening

friction. The post-instability nonlinear evolution results in

rapid slip mediated by rupture fronts whose properties do de-

pend on the stress state, the presence of velocity-strengthening

friction, and its functional form. In particular, the absence

of velocity-strengthening friction facilitates large slip events

that propagate at velocities approaching the elastic wave

speed and its presence gives rise to significantly smaller and

slower slip events. Finally, we related transiently propagating

rupture fronts to homogeneously driven steady-state fronts

[37] and showed that initial stresses systematically affect

the rupture dynamics. These robust results (i.e., parameter-

insensitive) may have significant implications for our un-

derstanding of interfacial failure and are currently extended

to 2D.
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