000201604 001__ 201604
000201604 005__ 20240610121155.0
000201604 0247_ $$2doi$$a10.1038/nmat3668
000201604 0247_ $$2ISSN$$a1476-1122
000201604 0247_ $$2ISSN$$a1476-4660
000201604 0247_ $$2WOS$$aWOS:000322119100025
000201604 0247_ $$2altmetric$$aaltmetric:1561774
000201604 037__ $$aFZJ-2015-03898
000201604 041__ $$aEnglish
000201604 082__ $$a610
000201604 1001_ $$0P:(DE-HGF)0$$aCui, Chunhua$$b0
000201604 245__ $$aCompositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis
000201604 260__ $$aBasingstoke$$bNature Publishing Group$$c2013
000201604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435321678_21655
000201604 3367_ $$2DataCite$$aOutput Types/Journal article
000201604 3367_ $$00$$2EndNote$$aJournal Article
000201604 3367_ $$2BibTeX$$aARTICLE
000201604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201604 3367_ $$2DRIVER$$aarticle
000201604 520__ $$aShape-selective monometallic nanocatalysts offer activity benefits based on structural sensitivity and high surface area. In bimetallic nanoalloys with well-defined shape, site-dependent metal surface segregation additionally affects the catalytic activity and stability. However, segregation on shaped alloy nanocatalysts and their atomic-scale evolution is largely unexplored. Exemplified by three octahedral PtxNi1−x alloy nanoparticle electrocatalysts with unique activity for the oxygen reduction reaction at fuel cell cathodes, we reveal an unexpected compositional segregation structure across the {111} facets using aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In contrast to theoretical predictions, the pristine PtxNi1−x nano-octahedra feature a Pt-rich frame along their edges and corners, whereas their Ni atoms are preferentially segregated in their {111} facet region. We follow their morphological and compositional evolution in electrochemical environments and correlate this with their exceptional catalytic activity. The octahedra preferentially leach in their facet centres and evolve into ‘concave octahedra’. More generally, the segregation and leaching mechanisms revealed here highlight the complexity with which shape-selective nanoalloys form and evolve under reactive conditions
000201604 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201604 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201604 7001_ $$0P:(DE-HGF)0$$aGan, Lin$$b1
000201604 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b2$$ufzj
000201604 7001_ $$0P:(DE-HGF)0$$aRudi, Stefan$$b3
000201604 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b4$$eCorresponding Author
000201604 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/nmat3668$$gVol. 12, no. 8, p. 765 - 771$$n8$$p765 - 771$$tNature materials$$v12$$x1476-4660$$y2013
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.pdf$$yRestricted
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.gif?subformat=icon$$xicon$$yRestricted
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201604 8564_ $$uhttps://juser.fz-juelich.de/record/201604/files/nmat3668.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201604 909CO $$ooai:juser.fz-juelich.de:201604$$pVDB
000201604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201604 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201604 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201604 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201604 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201604 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201604 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201604 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30
000201604 920__ $$lyes
000201604 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201604 980__ $$ajournal
000201604 980__ $$aVDB
000201604 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201604 980__ $$aUNRESTRICTED
000201604 981__ $$aI:(DE-Juel1)ER-C-1-20170209