000201622 001__ 201622
000201622 005__ 20240610120429.0
000201622 0247_ $$2doi$$a10.1063/1.4791576
000201622 0247_ $$2ISSN$$a0003-6951
000201622 0247_ $$2ISSN$$a1931-9401
000201622 0247_ $$2WOS$$aWOS:000315053300044
000201622 0247_ $$2Handle$$a2128/16826
000201622 037__ $$aFZJ-2015-03916
000201622 082__ $$a530
000201622 1001_ $$0P:(DE-HGF)0$$aKohn, Amit$$b0$$eCorresponding Author
000201622 245__ $$aStructure of epitaxial L10-FePt/MgO perpendicular magnetic tunnel junctions
000201622 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2013
000201622 3367_ $$2DRIVER$$aarticle
000201622 3367_ $$2DataCite$$aOutput Types/Journal article
000201622 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434034248_12153
000201622 3367_ $$2BibTeX$$aARTICLE
000201622 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201622 3367_ $$00$$2EndNote$$aJournal Article
000201622 520__ $$aPerpendicular magnetic tunnel junctions (p-MTJs) with MgO barriers are interesting for high-density information-storage devices. Chemically ordered L10-FePt is a potential electrode due to its large perpendicular magnetocrystalline anisotropy. To-date, a single theoretical study on L10-FePt/MgO p-MTJ based on an idealized structure reported significant dependence of spin-dependent tunneling on interface structure. [Y. Taniguchi et al., IEEE Trans. Magn. 44, 2585 (2008).] We report a structural study of epitaxial L10-FePt(001)[110]//MgO(001)[110]//L10-FePt(001)[110] p-MTJs, focusing on the interfaces using aberration-corrected scanning transmission electron microscopy. Interfaces are semi-coherent, with oxygen atomic-columns of MgO located opposite to iron atomic-columns in L10-FePt. Up to three lattice planes show atomic-column steps, the origin of which is attributed to antiphase boundaries in L10-FePt.
000201622 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000201622 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201622 7001_ $$0P:(DE-HGF)0$$aTal, Nadav$$b1
000201622 7001_ $$0P:(DE-HGF)0$$aElkayam, Ayala$$b2
000201622 7001_ $$0P:(DE-Juel1)144926$$aKovàcs, Andras$$b3$$ufzj
000201622 7001_ $$0P:(DE-HGF)0$$aLi, Dalai$$b4
000201622 7001_ $$0P:(DE-HGF)0$$aWang, Shouguo$$b5
000201622 7001_ $$0P:(DE-HGF)0$$aGhannadzadeh, Saman$$b6
000201622 7001_ $$0P:(DE-HGF)0$$aHesjedal, Thorsten$$b7
000201622 7001_ $$0P:(DE-HGF)0$$aWard, Roger C. C.$$b8
000201622 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4791576$$gVol. 102, no. 6, p. 062403 -$$n6$$p062403 -$$tApplied physics letters$$v102$$x0003-6951$$y2013
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.pdf$$yOpenAccess
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.gif?subformat=icon$$xicon$$yOpenAccess
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201622 8564_ $$uhttps://juser.fz-juelich.de/record/201622/files/1.4791576.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201622 909CO $$ooai:juser.fz-juelich.de:201622$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000201622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201622 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201622 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201622 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201622 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201622 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201622 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201622 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201622 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201622 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201622 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201622 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201622 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201622 920__ $$lyes
000201622 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201622 9801_ $$aFullTexts
000201622 980__ $$ajournal
000201622 980__ $$aVDB
000201622 980__ $$aUNRESTRICTED
000201622 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201622 981__ $$aI:(DE-Juel1)ER-C-1-20170209