001     201629
005     20240610115608.0
024 7 _ |a 10.1080/01411594.2012.695373
|2 doi
024 7 _ |a 0141-1594
|2 ISSN
024 7 _ |a 1029-0338
|2 ISSN
024 7 _ |a WOS:000312586700007
|2 WOS
037 _ _ |a FZJ-2015-03923
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kasama, Takeshi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: electron holography and Lorentz microscopy
260 _ _ |a London [u.a.]
|c 2013
|b Taylor & Francis
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435323936_21639
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The crystallographic and magnetic microstructure of magnetite (Fe3O4) below the Verwey transition (∼120 K) is studied using transmission electron microscopy. The low temperature phase is found to have a monoclinic C-centered lattice with a c-glide plane perpendicular to the b-axis, which allows twin-related crystal orientations to be distinguished. Off-axis electron holography and Lorentz electron microscopy are used to show that magnetic domains present at room temperature become subdivided into sub-micron-sized magnetic domains below the Verwey transition, with the magnetization direction in each magnetic domain oriented along the monoclinic [001] axis. The nature of the interactions between the magnetic domain walls and the ferroelastic twin walls is investigated. Cooling and warming cycles through the transition temperature are used to show that a memory effect is likely to exist between the magnetic states that form above and below the transition. Our results suggest that ferroelastic twin walls have a strong influence on the low temperature magnetic properties of magnetite.
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Harrison, Richard J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Church, Nathan S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nagao, Masahiro
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Feinberg, Joshua M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 5
|u fzj
773 _ _ |a 10.1080/01411594.2012.695373
|g Vol. 86, no. 1, p. 67 - 87
|0 PERI:(DE-600)2022931-8
|n 1
|p 67 - 87
|t Phase transitions
|v 86
|y 2013
|x 1029-0338
909 C O |o oai:juser.fz-juelich.de:201629
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21