000201682 001__ 201682
000201682 005__ 20240619092010.0
000201682 0247_ $$2doi$$a10.1039/C1JM15583K
000201682 0247_ $$2ISSN$$a0959-9428
000201682 0247_ $$2ISSN$$a1364-5501
000201682 0247_ $$2WOS$$aWOS:000298878100048
000201682 037__ $$aFZJ-2015-03976
000201682 082__ $$a540
000201682 1001_ $$0P:(DE-HGF)0$$aHao, Xiaoguang$$b0
000201682 245__ $$aImproved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies
000201682 260__ $$aLondon$$bChemSoc$$c2012
000201682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435555885_10721
000201682 3367_ $$2DataCite$$aOutput Types/Journal article
000201682 3367_ $$00$$2EndNote$$aJournal Article
000201682 3367_ $$2BibTeX$$aARTICLE
000201682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201682 3367_ $$2DRIVER$$aarticle
000201682 520__ $$aLithium-rich manganospinel (Li1+xMn2–xO4–δ, lithium manganese oxide) has been synthesized by hydrothermal methods employing potassium permanganate, lithium hydroxide, and acetone as synthons. The solid product crystallizes as 30–50 nm particles with some larger 100–300 nm particles also occurring. Materials prepared by this low-temperature route contain oxygen vacancies which can be demonstrated by combining thermogravimetric analysis, differential scanning calorimetry, and cyclic voltammetry. Oxygen vacancies can be minimized beyond the limits of detection for these experiments by annealing the compound in air at 500 °C for 4 h. At room temperature, Rietveld refinement of the powder neutron diffraction pattern shows an orthorhombic Fddd(α00) superlattice of the Fd[3 with combining macron]m space group for hydrothermally synthesized lithium manganospinel. After annealing, oxygen vacancies are eliminated and the superlattice features disappear. Furthermore, the hydrothermal synthesis of lithium manganospinel performed under a pure oxygen atmosphere followed by annealing at 500 °C for 4 h in air gives superior electrochemical properties. This compound shows a reversible capacity of 115 mAh/g when cycled at a rate C/3 and retains 93.6% of this capacity after 100 cycles. This same capacity is observed at the faster rate of 3C. At 5C, the capacity drops to 99 mAh/g, but capacity retention remains greater than 95% after 100 cycles. Finally, when cycled at 5C at an elevated temperature of 55 °C, the O2 annealed sample shows an initial capacity of 99 mAh/g with 89% capacity retention after 100 cycles. The high rate capability of this material is ascribed to fast lithium-ion diffusion, estimated to be 10−7 to 10−9 cm2 s−1 by electrochemical impedance spectroscopy.
000201682 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000201682 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x1
000201682 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201682 7001_ $$0P:(DE-HGF)0$$aGourdon, Olivier$$b1
000201682 7001_ $$0P:(DE-HGF)0$$aLiddle, Brendan J.$$b2
000201682 7001_ $$0P:(DE-HGF)0$$aBartlett, Bart M.$$b3$$eCorresponding Author
000201682 773__ $$0PERI:(DE-600)1491403-7$$a10.1039/C1JM15583K$$gVol. 22, no. 4, p. 1578 - 1591$$n4$$p1578 - 1591$$tJournal of materials chemistry$$v22$$x1364-5501$$y2012
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.pdf$$yRestricted
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.gif?subformat=icon$$xicon$$yRestricted
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201682 8564_ $$uhttps://juser.fz-juelich.de/record/201682/files/c1jm15583k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201682 909CO $$ooai:juser.fz-juelich.de:201682$$pVDB
000201682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201682 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201682 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000201682 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000201682 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000201682 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000201682 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x1
000201682 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x0
000201682 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x1
000201682 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS-SNS$$x2
000201682 980__ $$ajournal
000201682 980__ $$aVDB
000201682 980__ $$aI:(DE-Juel1)ICS-1-20110106
000201682 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000201682 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000201682 980__ $$aUNRESTRICTED
000201682 981__ $$aI:(DE-Juel1)IBI-8-20200312
000201682 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000201682 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000201682 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128