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Making use of the classical second-moment sum rule, it is possible to convert a series of constant-Q x-ray

Brillouin scattering scans (Q momentum transfer) into a series of constant frequency scans over the measured Q

range. The method is applied to literature results for the longitudinal phonon dispersion in several glass formers.

The constant frequency scans are well fitted in terms of a Q-independent phonon damping depending exclusively

on the frequency, in agreement with two recent theories of the boson peak. The method allows us to link the

x-ray Brillouin scattering to the diffuse Umklapp scattering from the boson peak vibrations at higher momentum

transfer on an absolute intensity scale.
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I. INTRODUCTION

Our knowledge of the sound waves at and above the boson

peak in glasses is to a large part due to x-ray Brillouin scattering

measurements [1–6], which allow us to see the longitudinal

part of the sound wave motion in the frequency range between

2 and 20 meV. The experimental arrangement makes scans of

S(Q,ω) at constant momentum transfer Q much easier than

constant-ω scans [3]. It is usual to fit such a constant-Q scan in

terms of the damped harmonic oscillator function, the so-called

DHO

S(Q,ω)

S(Q)
= fQδ(ω) +

1 − fQ

π

�2
QŴQ

(

ω2 − �2
Q

)2 + ω2Ŵ2
Q

. (1)

Here symbols with the index Q depend on the momentum

transfer Q, but not on the frequency ω. �Q is the sound wave

frequency, which defines the sound velocity cQ = �Q/Q at

this Q; ŴQ is the damping of the sound wave, and fQ is the

elastic (in liquids quasielastic) fraction of the scattering at

this Q.

The weak point of this evaluation is the following: The

strong damping that one fits to the sound waves above the

boson peak is not a real physical damping of the vibrations at

the sound wave frequency. Instead, it reflects a deviation of the

eigenvectors from a perfect sine function in space. Thus, it is

not a damping for all frequencies at fixed Q, as supposed by

Eq. (1), but rather a distribution of sound wave vectors around

an average one at the given frequency. It is a property of the

frequency window rather than a property of the momentum

transfer window. In fact, this weak point can be directly seen

at larger Q, where the DHO fit has too much intensity close to

the elastic line [1].

On the other hand, at most points in the relevant (Q,ω)-

space, the DHO manages to fit the data very well. Thus, it

certainly supplies a good parameter set for the description

of S(Q,ω). The question is only whether the parameters are

indeed meaningful. There will be two well-studied cases—

silica and glycerol—where they are not, at least not at higher

frequencies.

The present paper introduces a method to convert a

sequence of DHO fits over a whole range of Q into the set
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of constant frequency scans that one needs, making use of

the classical second moment sum rule [7]. The method is

applied to measurements in beryllium fluoride [8], vitreous

silica [5], polybutadiene [9], and glycerol [4]. The data are

fitted in terms of the phonon structure factor of generalized

hydrodynamics [10], which according to two recent theories

of the boson peak [11–13] is also appropriate for glasses.

At higher momentum transfer, the scattering is no longer

dominated by the longitudinal sound waves but begins to

reflect the full vibrational density of states (the Umklapp

scattering [14]). This crossover requires the introduction of

an additional Umklapp term in polybutadiene and glycerol.

The following Sec. II derives the equation for the dynamic

structure factor and its fitting function. Section III applies

the equations to the four above-mentioned examples. The

fit parameters are compared to the DHO parameters. For

beryllium fluoride and polybutadiene, where both parameter

sets agree within experimental error, the results are compared

to the predictions of one of the theories [13]. Section IV

discusses and concludes the paper.

II. THEORETICAL BASIS

Fortunately, it is easy to translate a set of DHO measure-

ments at a series of different Q into the set of constant-ω scans

that one would like to have. One notes first that for a DHO

(1 − fQ)S(Q) is fixed to the value

(1 − fQ)S(Q) =
kBT

Mc2
Q

(2)

by the classical second moment sum rule [7],

∫ ∞

−∞
ω2S(Q,ω)dω =

kBT Q2

M
, (3)

where M is the average atomic mass. The second moment sum

rule has already been successfully used to normalize x-ray

Brillouin data in liquid lithium [15], in liquid cesium [16], as

well as in glassy sulfur [17] and glassy sorbitol [18].

With this equation, one can calculate a constant-ω scan of

S(Q,ω) for any ω in absolute units, each DHO scan supplying

a point at its Q value. The result is best plotted in terms of the
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dimensionless dynamical structure factor Fω(Q) defined by

Fω(Q) =
Mω3S(Q,ω)

kBT Q2
, (4)

which in terms of the DHO parameters is given by

Fω(Q) =
1

π

ŴQω3

(

ω2 − �2
Q

)2 + ω2Ŵ2
Q

. (5)

The definition allows us to link the low-Q x-ray Brillouin

scattering results to inelastic x-ray or neutron scattering mea-

surements of the vibrational density of states [19–23] at higher

momentum transfer. As one passes the boundary of the first

Brillouin zone and approaches the first sharp diffraction peak,

one begins to see the whole density of vibrational states in

the given frequency window, of which the longitudinal sound

waves are only a small fraction. At high momentum transfer,

the coherent scattering cross section approaches the incoherent

one, in which all vibrations appear on the same intensity level.

This high-momentum transfer scattering is called “diffuse

Umklapp scattering” [22], because it is the glassy counterpart

of the Umklapp scattering from phonons in crystals [14].

The classical one-phonon approximation for incoherent

scattering reads

Sinc(Q,ω) =
kBT Q2e−2W

2M

g(ω)

ω2
, (6)

where g(ω) is the vibrational density of states and e−2W is

the Debye-Waller factor. This shows that within the range of

validity of the one-phonon approximation, Fω(Q) is related to

the oscillation function Sω(Q) = S(Q,ω)/Sinc(Q,ω), which

oscillates around 1 at higher momentum transfer,

Fω(Q) = Sω(Q)
ωg(ω)

2
e−2W . (7)

Sω(Q) contains information on the modes in the given

frequency window [23]. Within the classical one-phonon

approximation, the oscillation function

Sω(Q) =

˝
3

Q2Fnorm

∣

∣

∣

∣

∣

∣

N
∑

j=1

bj e−iQ·rj
Q·ej

M
1/2

j

∣

∣

∣

∣

∣

∣

2
˛

ω

, (8)

where the angular brackets denote an average over all eigen-

modes at the frequency ω, together with a directional average

over the momentum transfer vector Q. The sum j = 1,..N

goes over the N atoms of the sample, with the position vector

rj , the scattering length bj and the eigenvector component ej .

The mode normalization factor Fnorm is given by

Fnorm =
N

∑

j=1

b2
j e2

j

Mj

. (9)

In a monatomic substance, the translational invariance condi-

tion
∑N

j=1 ej = 0 ensures an initial Q2 rise of Sω(Q) and thus

also of Fω(Q). The results of the present work suggest the

existence of such an initial Q2 rise in polyatomic glasses as

well.

In order to fit Fω(Q) in the Brillouin range, one can

use the dynamic structure factor of a damped longitudinal

phonon [10–13] plus the initial Umklapp term

Fω(Q) =
fω

π

(Ŵω/ω)Q2Q2
B

(

Q2 − Q2
B

)2 + (Ŵω/ω)2Q4
+ fUQ2, (10)

with parameters that no longer depend on Q. Instead, they

depend on ω as they should. The Brillouin wavevector QB

defines a frequency-dependent longitudinal sound velocity

cl = ω/QB and Ŵω describes the frequency-dependent damp-

ing. One can no longer reckon with the normalization property

of the second moment sum rule. Therefore, one needs not only

the two parameters QB and Ŵω, but an additional normalization

factor fω as well, which tends to one at frequency zero. At

higher momentum transfer, one has to include the initial rise

fUQ2 of the Umklapp scattering [19–23].

In generalized hydrodynamics [10], the first term of Eq. (10)

is a consequence of the viscous damping, but in the two theories

of Schirmacher [11,12] and the very recent one of DeGiuli

et al. [13], the term results from genuine theoretical treatments

of the boson peak. In the original Schirmacher theory [11], the

phonon form factor results from fluctuating elastic constants,

but it was shown later that one gets the same form factor if one

assumes an interaction between soft local oscillators and the

sound waves [12]. The second theory (denoted in the following

as DLDLW theory) emphasizes the connection between boson

peak modes and local structural instabilities, treating the

glass as a nearly unstable substance that can be pushed into

instability by a small external influence (in the DLDLW theory

a small pressure). The dynamic equations are then expanded

in terms of the small distance from instability. This leads to

a frequency ω∗, the lower boundary of the domain where the

phonon damping dominates. The boson peak frequency ωb

and the Ioffe-Regel crossover lie below this ω∗ and are pushed

down to the frequency zero as one approaches instability. The

relation of the parameters of Eq. (10) to the complex modulus

�k(ω) (more precisely the longitudinal modulus multiplied

with the mass density, the square of the sound velocity) of the

theory is

�k(ω) =
ω2

Q2
B

+ i
Ŵωω

Q2
B

, (11)

yielding the complex wavevector

q∗ =
ω(Re

√
�k − iIm

√
�k)

|�k|
. (12)

Note that the real part Q∗
B of this complex eigenvector is

smaller than QB , the more so the stronger the damping is.

As an important consequence, the sound velocity ω/Q∗
B is

larger than ω/QB . This consequence holds generally for

both theories, but the DLDLW theory [13] emphasizes the

difference and makes detailed predictions for the two sound

velocities and the mean free path.

III. COMPARISON TO EXPERIMENT

Comparing the DHO with the constant-frequency Eq. (10),

one finds complete equivalence for the generic case of a

frequency-independent sound velocity together with a damp-

ing ∝Q2. Then for Q = QB and ω = �Q, ŴQ = Ŵω. This

seems to hold in beryllium fluoride, our first example.
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FIG. 1. Constant-ω scans of the dynamic structure factor Fω(Q)

calculated from the x-ray Brillouin scattering data of Scopigno

et al. [8] in BeF2 at 297 K. The lines are fits in terms of Eq. (10)

with fω = 1 and fU = 0. The arrows denote the two wavevectors Q∗
B

and QB , of which the smaller one is the true wavevector according to

theory [11–13].

Figure 1 shows that one can fit the Fω(Q) calculated from

the BeF2 x-ray Brillouin data of Scopigno et al. [8] with fω =
1 and fU = 0 up to 25 meV. Fitting fU , one gets 0 within

experimental error. At low frequency, the fit gets better if one

allows for fω slightly larger than 1, but above 10 meV the

fitted fω is 1 within experimental error. Since one also obtains

a reasonably constant sound velocity over the whole frequency

range, the conditions for the equality of both sets of parameters

are fulfilled—and one gets indeed the same parameters within

experimental error from both approaches (see the comparison

to the DHO parameters in Fig. 2).

Note that the influence of the Debye-Waller factor e−2W

is negligible in the Brillouin signal, because the mean

square displacement at the glass transition is of the order

of 10−3 nm2 [24]. In the Brillouin range, the Debye-Waller

deviation from 1 is therefore of the order of 1% and remains

within the error bars.

According to theory [11–13], the real part of the wave vector

is not QB , but rather the Q∗
B defined in Eq. (12). Figure 1 shows

both values as arrows. One sees that indeed Q∗
B is much closer

to the peak in Fω(Q) than QB , which at 24 meV in Fig. 1(d)

is nearly a factor of two larger than the peak position.

The DLDLW theory makes a prediction for the sound

velocity c∗
l (ω) = ω/Q∗

B ,

c∗
l (ω) =

|�k|
Re

√
�k

∝ (ω2 + ω∗2)1/4. (13)

FIG. 2. Comparison of our structure factor fit parameters for

beryllium fluoride with the DHO parameters [8] and with the DLDLW

theory [13] for (a) the sound velocities (full squares, DHO; open

squares, ω/QB ; open triangles, ω/Q∗
B ; continuous line, DLDLW

theory with ω∗ = 5 meV), (b) the damping (full circles, DHO; open

circles, Ŵω/ω), and (c) the mean free path (open circles, ls from

this work; full circles, lres from the DHO parameters; dashed line,

DLDLW theory).

Figure 2(a) shows the sound velocities ω/Q∗
B divided by

c0 = 5500 m/s (this value was adapted to the lowest DHO

point), as open triangles. They follow the prediction of Eq. (13)

with ω∗ = 5 meV [the continuous line in Fig. 2(a)]. Above ω∗,

v(ω) separates from ω/QB in exactly the way predicted by the

DLDLW theory [13].

A second prediction of the DLDLW theory concerns the

mean free path of the sound waves

ls =
|�k|

ωIm
√

�k
∝

(ω2 + ω∗2)1/4

ω
, (14)

which should separate above ω∗ from the DHO mean free path

lres = 2(�Q/Q)/ŴQ. The comparison to the calculated results

in Fig. 2(c) shows that the separation indeed begins at ω∗ as

predicted, but that it is only half as large as the prediction [the

dashed line in Fig. 2(c)].

Question: Why does one only see longitudinal phonons

and nothing else in the very large (Q,ω) range of Fig. 1? The

question is answered by our next example, vitreous silica. At

low frequency, one finds phonon structure factors that are very

similar to those of beryllium fluoride in Fig. 1. At 20 meV,

the Umklapp scattering begins to attain the same height as

the Brillouin peak. This is shown in Fig. 3, combining x-ray

Brillouin data at 1620 K [5] with neutron Umklapp scattering

data at a nearby temperature, 1673 K [25]. The figure illustrates

the technical problem at high frequencies: the x-ray data end
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FIG. 3. Constant-ω scan of the dynamic structure factor Fω(Q)

at 20 meV, calculated from the x-ray Brillouin scattering data of

Baldi et al. [5] in vitreous silica at 1620 K and from 1673 K neutron

data [25]. The continuous line is a fit in terms of Eq. (10); the dashed

line is its Umklapp scattering component.

at 4 nm−1 (though they needed not end there); the neutron data

begin at 20 nm−1.

Of course, dedicated experiments could close this gap

easily and completely. But even with the gap, one understands

immediately why the x-ray data [5] can be fitted with fU = 0:

The fU that one extrapolates from the measured Umklapp

scattering is too small to influence the fit results (remember that

both measurements are on the same absolute intensity scale).

Since silica and beryllium fluoride have similar structure and a

similar spectrum [21,26], this explains also why one does not

see any Umklapp contribution in BeF2.

The neutron Umklapp scattering shows the peak at

30 nm−1 characteristic for librations of corner-connected

tetrahedra [23], a motion which does not lead to a large signal

at small Q. This might be otherwise (and is indeed otherwise)

in other systems: a prominent example are the string-like

boson peak modes in glasses forming from simple liquids or in

selenium [27], which must be expected to show a large signal

already at small momentum transfer. The example illustrates

the importance of the method for a better understanding of

the interplay between the longitudinal sound waves and the

system-specific boson peak vibrations [28].

But though there is as yet no Umklapp scattering in the

Brillouin range in silica, fω is not 1 as in beryllium fluoride.

It shows a gradual decrease in Fig. 4(a) from a value of 1.15

at 4.5 meV to a value of 0.78 at 20 meV. Since the Umklapp

scattering cannot be responsible, the deviations of fω from

1 at these small QB-values must be due to the anomalous

dispersion seen in Fig. 4(b). In fact, if one fits the measured

sound velocity with a third-order function [the continuous line

in Fig. 4(b)], one can calculate fω with the equation

fω =
cl

cl + ω∂cl/∂ω
(15)

from the measured sound velocity values cl = ω/QB . This

provides the continuous line in Fig. 4(a).

FIG. 4. Structure factor fit parameters for vitreous silica at 1620 K

for (a) the amplitude fω (open squares), compared to the continuous

line calculated from the measured dispersion, (b) sound velocities

ω/QB normalized to the Brillouin value c0 = 6500 m/s (open

squares, this work; continuous line, fit to the open squares; full

squares, DHO parameters from the same data [5]; full triangles, DHO

parameters from 1570 K data at higher Q [29]), and (c) damping Ŵ/ω

(open circles, this work; full circles, Ref. [5]; full triangles, Ref. [29]).

The parameters of fits with fU = 0 between 4.5 and 20 meV

in vitreous silica are compared in Figs. 4(b) and 4(c) with the

DHO parameters of Baldi et al. [5], taking again the Brillouin

light scattering sound velocity of 6500 m/s as the reference

velocity c0. One finds differences that are clearly out of the

error bars. On the other hand, there is reasonable agreement

with DHO values evaluated at higher Q, taking an additional

boson peak component into account [29]. This indicates that

the differences appear with the appearance of the boson peak

in the Umklapp scattering, a phenomenon to which the DHO

is naturally more susceptible than a structure factor fit. With

the appearance of the boson peak, the apparent DHO sound

velocity bends down and the damping increases, unless the

boson peak intensity is explicitly taken into account as in

Ref. [29].

In the silica case, one sees changes in fω from the dispersion

without any Umklapp scattering. But there must be a second

effect, namely a decrease of fω at high frequency, where

the weight of the second moment sum rule in Fω(Q) is

transferred from the longitudinal sound waves to the Umklapp

scattering. fω must decrease with increasing momentum

transfer according to

fω = 1 −
Q2

B

Q2
U

, (16)
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FIG. 5. Constant-ω scans of the dynamic structure factor Fω(Q)

calculated from the x-ray Brillouin scattering data of Fioretto et al. [9]

in polybutadiene at 140 K. The continuous lines are fits in terms of

Eq. (10); the dashed lines show the Umklapp contribution. The arrows

denote the values of ωg(ω)/2 around which the Umklapp scattering

oscillates at high Q.

where Q2
U is the weighted average of the Umklapp contri-

butions at the different frequencies with a QU (ω) defined

by

fU (ω) =
ωg(ω)

2QU (ω)2
. (17)

This effect is not seen in beryllium fluoride or in vitreous

silica, where the Umklapp scattering is too weak to play a

role in the momentum transfer range of the x-ray Brillouin

measurements. But it becomes visible in our third example,

polybutadiene [9], where the measurements extend up to

10 nm−1 and show a clear Umklapp contribution in Fig. 5.

The fits are again perfect up to 15 meV, but do now require a

small positive fU at higher frequencies, as well as a decrease

of fω from about 1.1 at low frequency to 0.8 at high frequency.

The decrease of fω at higher momentum transfer in Fig. 6(a)

is well described in terms of Eq. (16) with QU = 25 nm−1

(note there is also a slight influence of the dispersion in

Fig. 7(b), which displaces the whole curve to higher values).

The same QU (together with measured values for the density

of states [30]) allows us to reproduce within experimental error

the measured fU values from Eq. (17), as shown in Fig. 6(b).

The finding confirms the general considerations on a takeover

of the Umklapp scattering at higher momentum transfer which

led to the two equations.

The results are again compared to the DHO fits [9] and

to the DLDLW theory in Fig. 7, taking the measured [31]

light scattering Brillouin sound velocity 2770 m/s as the

FIG. 6. Evaluation of the 140 K polybutadiene data: (a) Fit

(continuous line) of the measured intensity factors fω (full squares)

in terms of Eq. (16) with QU = 25 nm−1 plus a slight upshift.

(b) Comparison of the fitted fU values (full triangles) with the

prediction of Eq. (17) (continuous line) for the same QU value,

calculated with the measured vibrational density of states [30].

reference sound velocity c0. In this case, the fitted value for

ω∗ = 4.2 ± 0.5 meV is clearly larger than the boson peak

frequency of 2 meV [30], showing that polybutadiene in terms

of the DLDLW theory is a glass close to its stability limit.

The experimental splitting for the DHO and DLDLW mean

free path occurs at ω∗ as predicted, but is again weaker than

predicted.

Figure 8 shows structure factor scans calculated from x-ray

Brillouin data in the last example, glycerol [4]. Their fit reveals

a fast disappearance of the longitudinal signal toward higher

frequency, together with a fast rise of the Umklapp component.

In this case, the disappearing sound wave signal sits on the

slope of a broad growing Umklapp scattering mountain, so

one does not expect agreement between DHO and constant-

frequency parameters. In fact, there is a marked difference

in the sound velocity: while the DHO parameters in Fig. 9

show a slight sound velocity decrease at high frequency, the

present evaluation shows an increase, similar to the one in

silica, but already setting in below the boson peak frequency

of 4 meV. Obviously, the silica explanation of the difference

is also appropriate here: The DHO gives the wrong answers

because the boson peak Umklapp scattering has not been taken

into account.

IV. DISCUSSION AND CONCLUSIONS

From the examples in the preceding section, one concludes

that the constant-energy scattering form factor, Eq. (10), is

indeed able to reproduce the structure factor scans derived
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FIG. 7. Comparison of the structure factor fit parameters for

polybutadiene determined here with the DHO parameters [9] and

with the DLDLW theory [13] for (a) the sound velocities (full

squares, DHO; open squares, from ω/QB ; open triangles, from

ω/Q∗
B ; continuous line, DLDLW theory with ω∗ = 4.2 meV),

(b) the damping (open circles, Ŵω/ω), and (c) the mean free path (open

circles, ls from this work; full circles, lres from the DHO parameters;

dashed line, DLDLW theory).

FIG. 8. Constant-ω scans of the dynamic structure factor Fω(Q)

calculated from the x-ray Brillouin scattering data of Monaco and

Giordano [4] in glycerol at 150 K. The continuous lines are fits in

terms of Eq. (10); the dashed lines are their Umklapp component.

FIG. 9. The parameters of the structure factor fits in glycerol

at 150 K for (a) the amplitude fω, (b) the sound velocity ω/QB

divided by the low-frequency sound velocity c0 = 3620 m/s, and

(c) the damping Ŵω/ω. Open symbols from the constant-ω scans of

the dynamic structure factor Fω(Q); full symbols calculated from the

DHO parameters [4].

from DHO data with the second-moment sum rule recipe

of the present paper. This confirms the finding of the two

theoretical treatments of the boson peak [11–13], according

to which the Brillouin scattering form factor of a glass or an

undercooled liquid should correspond to the one of generalized

hydrodynamics [10].

As emphasized in the DLDLW theory [13], the generalized

hydrodynamics form factor implies the existence of two

longitudinal sound velocities c∗
l = ω/Q∗

B and cl = ω/QB ,

which are equal for zero damping, a natural consequence

of a complex modulus. The wave vector Q∗
B determines

the oscillation period in space. The examples of beryllium

fluoride (Fig. 2) and of polybutadiene (Fig. 4) demonstrate

that the DLDLW theory describes the splitting of the two

sound velocities at a critical frequency ω∗ very accurately.

The measured scattering lengths are less well described,

probably because the two samples are not close enough to

the mechanical instability case, which is the basis of the

theory [13]. It is possible to get a better fit to the scattering

length with a more refined approximation, which is beyond

the scope of this paper.

The sound velocity cl (the square root of the real part of the

complex modulus �k) is not irrelevant, because it determines

the intensity factor. The example of beryllium fluoride (Figs. 1

and 2 of the preceding section) shows that the intensity factor

fω does not react at all to the large changes in c∗
l , while the

example of silica (Figs. 3 and 4 of the preceding section)

shows that it is very sensitive to changes in cl . The wavelength

is determined by c∗
l ; the intensity of the scattering function is

determined by ∂cl/∂ω according to Eq. (15).
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The same example illustrates very clearly the origin

of possible differences between DHO and structure factor

parameters, because they agree if the Umklapp scattering from

the boson peak vibrations is properly taken into account [29].

If the measurements extend to higher momentum transfer,

one has to add the initial quadratic rise of the Umklapp scat-

tering [19–21,23]. This has been illustrated by the examples of

polybutadiene and glycerol. In polybutadiene, this contribution

is weak, but in glycerol it tends to dominate the scattering

already at the boson peak. The Umklapp parameter brings the

number of parameters up to four, one more than those of a

DHO fit. When the Umklapp scattering becomes visible, the

Brillouin scattering form factor starts to diminish, a second

influence on the intensity factor fω.

Neither the Schirmacher theory [11] nor the DLDLW

theory [13] can predict the Umklapp scattering, because they

are continuum theories describing the effect of the atomic

disorder in a mean-field approximation. To cite from a new

simulation [32] evaluated in terms of the Schirmacher theory,

“We would like to emphasize again that the vibrational spec-

trum beyond the boson peak frequency cannot be described

by concepts borrowed from Debyes theory: The disorder is

dominant in this regime. It has been shown previously that the

vibrational states in this regime obey the statistics of random

matrices.”

To predict the Umklapp scattering, one needs to calculate

the dynamical matrix of the given substance on the atomic

level as in the new theoretical approach of Parshin et al. [28].

The result depends on the structure factor of substance-specific

boson peak modes, thus explaining the very different strength

of the Umklapp scattering in our four examples.

Glycerol is not the only glass former showing a dis-

appearance of the longitudinal correlation at relatively low

frequency. If one evaluates the selenium Brillouin x-ray data

of Scopigno et al. [33], one finds the same result. In this case,

the longitudinal correlation disappears at 6 meV, the maximum

of the dispersion curve derived from the data.

The two examples show an important advantage of the new

method. A DHO fit does not tell one how much is left of the

full longitudinal correlation, but the fit of the structure factor

scans supplies this information.

From the examples shown, it is obvious that one gets more

(and more accurate) information from the new evaluation

method proposed here, not only because it is better adapted

to the physics but also because it allows us to calculate the

dynamic structure factor on an absolute scale. For future

experiments, it is naturally not necessary to fit with the DHO,

because one can apply the second moment sum rule directly to

the measured data. This should extend the method beyond the

Brillouin scattering into the Umklapp range, where the data

are no longer well fitted by the DHO.

To conclude, the classical second moment sum rule allows

us to calculate dynamic Brillouin structure factors from

damped harmonic oscillator fits of constant-Q scans. The

dynamic Brillouin structure factors are not only better adapted

to modern theories of the boson peak but are also able to link the

Brillouin data to measurements of the full vibrational spectrum

at higher momentum transfer on an absolute intensity scale.
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