000201728 001__ 201728
000201728 005__ 20240708132828.0
000201728 037__ $$aFZJ-2015-04022
000201728 1001_ $$0P:(DE-Juel1)157996$$aKoch, Denise$$b0$$ufzj
000201728 1112_ $$aInternational Thermal Spray Conference and Exposition$$cLong Beach, CA$$d2015-05-11 - 2015-05-14$$gITSC 2015$$wUSA
000201728 245__ $$aAtmospheric plasma spraying of self-healing thermal barrier coatings
000201728 260__ $$c2015
000201728 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1435558969_10718$$xInvited
000201728 3367_ $$033$$2EndNote$$aConference Paper
000201728 3367_ $$2DataCite$$aOther
000201728 3367_ $$2ORCID$$aLECTURE_SPEECH
000201728 3367_ $$2DRIVER$$aconferenceObject
000201728 3367_ $$2BibTeX$$aINPROCEEDINGS
000201728 520__ $$aThe state-of-the-art material for the topcoat of thermal barrier coatings (TBCs) is yttria stabilized zirconia (YSZ). Due to induced stresses while thermal cycling, cracks develop near the thermally grown oxide layer (TGO), which can cause delamination. In the described approach a self-healing TBC will be created by embedding MoSi2 in the topcoat. The developed cracks will be refilled due to oxidation and the accompanying volume expansion. By this the lifetime of TBCs can be improved. As the topcoat still consists of YSZ the TBC is expected to have the advantages of the state-of-the-art material and the described self-healing ability. The processing parameters to produce composite YSZ/MoSi2 coatings by atmospheric plasma spraying (APS) have been studied. A major challenge are the different characteristics of MoSi2 and YSZ in terms of melting temperature and oxidation behavior. The quality of the coatings has been evaluated by X-ray powder diffraction and scanning electron microscopy.
000201728 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000201728 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000201728 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b1$$ufzj
000201728 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b2$$ufzj
000201728 773__ $$y2015
000201728 909CO $$ooai:juser.fz-juelich.de:201728$$pVDB
000201728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157996$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201728 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000201728 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000201728 9141_ $$y2015
000201728 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000201728 980__ $$aconf
000201728 980__ $$aVDB
000201728 980__ $$aI:(DE-Juel1)IEK-1-20101013
000201728 980__ $$aUNRESTRICTED
000201728 981__ $$aI:(DE-Juel1)IMD-2-20101013