
PHYSICAL REVIEW A 85, 022310 (2012)

Frequency-modulated pulses for quantum bits coupled to time-dependent baths

Benedikt Fauseweh,1,* Stefano Pasini,2,† and Götz S. Uhrig1,‡
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We consider the coherent control of a quantum bit by the use of short pulses with finite duration τp. By shaping

the pulse, we perturbatively decouple the dynamics of the bath from the dynamics of the quantum bit during

the pulse. Such shaped pulses provide single quantum bit gates robust against decoherence which are useful

for quantum-information processing. We extend previous results in two ways: (i) we treat frequency-modulated

pulses and (ii) we pass from time-independent baths to analytically time-dependent baths. First- and second-order

solutions for π and π/2 pulses are presented. They are useful in experiments where amplitude modulation is

difficult to realize.
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I. INTRODUCTION

The occurrence of decoherence in quantum systems is one

of the main difficulties to be overcome in modern experiments.

Especially quantum-information processing (QIP) requires the

quantum system to remain in fixed phase relations between the

application of quantum gates. Otherwise one cannot benefit

from the quantum parallelism making QIP such a powerful

technique.

A generic example for a quantum bit (qubit) is a spin S =
1/2. One of the first implementations of a quantum algorithm

was realized with nuclear magnetic resonance (NMR) [1]. The

qubits are encoded in the nuclear spin degrees of freedom. We

also use the spin language to describe the states and dynamics

of the qubit. The state ↑ is identified with the logical |1〉 and

the state ↓ with the logical |0〉.
The loss of coherence is induced by the coupling of the spin

to its environment, the so-called bath. One way to suppress

this coupling is the application of suitable control pulses

first introduced by Hahn in 1950 [2] for NMR experiments.

This idea led to the development of sequences for control

pulses ranging from the Carr-Purcell-Meiboom-Gill (CPMG)

cycle [3,4] to more and more complex control schemes [5].

In QIP, this approach is known under the name of dynamic

decoupling (DD) [6–8]. Theoretically, dynamic decoupling

can be achieved to infinite order in the duration T of the total

pulse sequence [9,10]. One particularly efficient way to deal

with pure dephasing decoherence is the use of theoretically

optimized DD (Uhrig DD) [11–13]. It has been successfully

implemented experimentally [14,15].

The pulses considered in theoretical studies of DD schemes

are mostly ideal in the sense that they have an infinite amplitude

and that they act instantaneously in time corresponding to

Dirac δ pulses. Of course, this property cannot be realized in

experiments. If the finite pulse duration is taken into account

in calculations, it turns out to be a nuisance in most cases

(see, for instance, Refs. [10,16]). Hence, there is an abundant

literature on pulse shaping and optimization which we can
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mention only partly [16–31] (for a book see Ref. [32]).

We emphasize, however, that a suitably shaped pulse can

be integrated into a DD sequence such that the high-order

suppression of decoherence is hardly hampered [33,34].

The majority of the existing theoretical studies of pulse

shaping consider pulses acting on the two-dimensional Hilbert

space. The goal is to design robust pulses which tolerate a

maximum of frequency offset or other inaccuracies of the

pulse [17–23,26]. The next stage of complexity includes

random time-dependent classical noise, which is still described

by classical fields coupled to the spin [25]. The maximum

stage of complexity considers a fully quantum mechanical

bath which means that the qubit is coupled to a macroscopic

quantum mechanical system by noncommuting operators

[16,24,27–31]. It is on this level that our present study is

situated. We stress that a quantum mechanical pulse, which

is robust against a coupling to its environment, constitutes an

appropriate single-qubit gate.

In particular, we extend previous work [30] in two ways:

(i) We allow for analytically time-dependent bath operators,

both in the spin-bath coupling and in the Hamiltonian of

the bath. Such time dependence may, for instance, arise

from a time-dependent reference frame [35]. (ii) We propose

frequency-modulated pulses while before only amplitude-

modulated pulses were studied [16,24,27,28,30,31] except in

the general no-go theorem in Ref. [29]. We stress that in the

NMR context amplitude and phase-modulated pulses have

been discussed intensively [21–23]. But to our knowledge

these investigations do not comprise quantum mechanical

baths nor dynamic classical noise.

Explicitly, we compute continuous solutions for π and π/2

pulses realized by frequency modulation (see also Ref. [23]).

The consideration of frequency modulation is motivated from

experimental situations where the frequency of a pulse can be

controlled more accurately or more easily than its amplitude.

Thus the present study is complementary to preceding ones.

The paper is organized as follows: In Sec. II, we give an

overview of the model under study and motivate our ansatz for

the time evolution of the whole system. In Sec. III we derive

the perturbative expansion for a generic time-dependent bath.

We require that the time dependence is analytical in order to

be able to apply a perturbative approach. Then we introduce

the frequency-modulated ansatz in Sec. IV and specialize the
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general equations for this specific case. The solutions found

for first- and second-order pulses are discussed in Sec. V and

we finally conclude in Sec. VI.

II. MODEL AND ANSATZ

We consider the general case of a spin coupled to a time-

dependent bath

H (t) = Hb(t) + �σ · �A(t), (1)

where Hb(t) denotes the part of the Hamiltonian that acts only

on the bath. We refer to it as the bath Hamiltonian. The vector of

Pauli matrices �σ acts on the Hilbert space of the spin S = 1/2

while �A(t) is a vector of bath operators to which the spin is

coupled. No special operator structure is assumed for the bath

operators; i.e., the commutators [Ai(t
′),Ai(t)], [Ai(t

′),Aj (t)],

and [Ai(t
′),Hb(t)] do not need to vanish.

The model (1) comprises typical cases such as a bosonic

bath or a spin network. Relevant experimental systems com-

prise the electronic spin in a quantum dot coupled to the bath

of nuclear isotope spins [36] or the spin of a nitrogen vacancy

center in diamond interacting again with a bath of nuclear

isotope spins [37]. For our purposes, we require that the time

dependence of the operators Hb(t) and �A(t) is analytical so

that they can be expanded in time:

�A(t) = �A0 + �A1t + �A2t
2 + · · · , (2a)

Hb(t) = Hb,0 + Hb,1t + Hb,2t
2 + · · · . (2b)

This analyticity is often fulfilled, e.g., in rotating reference

frames or in the operator interaction picture. For fast time-

dependencies, however, the above expansion is not useful

because the derivatives are large. Very fast oscillatory time-

dependencies are better treated by average Hamiltonian theory.

Our model includes the common case of a purely dephasing

bath, i.e., a spin coupled only along the σz direction to the bath.

This model is justified in experiments where the dephasing

time T2 is significantly lower than the longitudinal relaxation

time T1. This is the case if the energetic splitting between the

states with σz = 1 and σz = −1 is large.

The coupling strength between the spin and the bath is given

by λ := || �A(t)|| while the energy of the bath is defined to be

ωb := ||Hb(t)||. If these operators are not bounded, that means

if λ and ωb cannot be defined by the operator norms, we refer

by λ and ωb to the generic energy scales of the corresponding

operators. For instance, in a bosonic bath ωb is the upper cutoff

of the bosonic energy spectrum. The energy scales serve as

reference values for τp. That means that we aim at an expansion

in the dimensionless ratios ωbτp and λτp.

Applying the control pulse to the system, the term

Hv(t) = �σ · �v(t) (3)

is added to the Hamiltonian H (t). Here �v(t) is a vector of

amplitudes describing the controllable time-dependent shape

of the pulse. The normalized vector �v(t)/ |�v(t)| is the current

axis of rotation at time t while the norm |�v(t)| describes the

magnitude of the control term which determines the velocity of

rotation. Without loss of generality, we assume that the pulse

starts at t = 0 and ends at t = τp. The time evolution between

0 and τp of the combined system reads

U (τ ) = T

[

exp

(

− i

∫ τ

0

H (t)dt − i

∫ τ

0

Hv(t)dt

)]

, (4)

where T stands for the standard time ordering.

Our aim is to perturbatively decouple the time evolution of

the spin from the time evolution of the bath during the pulse.

This motivates the following ansatz for the time evolution of

the whole system

U (τp) = Ub(τp)P (τp)Uc(τp), (5)

where

Ub(t) = T exp

(

− i

∫ t

0

Hb(t ′)dt ′
)

, (6a)

P (t) := T exp

(

− i �σ ·

∫ t

0

�v(t ′)dt ′
)

. (6b)

The unitary operator Ub(τp) describes the time evolution

of the bath and P (τp) the rotation of the spin due to the

pulse. Note that the ansatz Ub(τp)P (τp) does not comprise any

coupling between spin and bath. It is close to the goals of many

previous studies aiming at robust pulses [17–23,25,26] and it

corresponds to the ansatz used in previous studies separating

the pulse from a classcial [25] or a quantum mechanical

dynamics of the bath [16,24,27,30,31]. We emphasize that

an ansatz which separates the pulse from the dynamics of the

spin plus bath system can be shown not to succeed beyond

leading order [28,29].

Since the spin-bath coupling is not included in Ub(τp)P (τp)

we introduced the correction unitary operator Uc(τp) in Eq. (5).

We want to shape the pulse so that the correction term is as

close to the identity as possible. A perfect decoupling would

imply Uc(τp) = 1. But this is unrealistic to achieve. Hence we

pursue the perturbative approach to make as many terms of an

expansion in τp as possible vanish. Then U (τp) ≈ Ub(τp)P (τp)

represents a valid approximation and one can neglect the spin-

bath coupling during the pulse. We remark that pulses shaped

in this way constitute robust single-qubit gates.

III. DERIVATION

The derivation of the perturbative conditions for the shaped

pulses is very similar to the derivation given in Ref. [30]. Yet we

present a brief outline here in order to keep the present article

self-contained and because we extend the previous derivation

to analytically time-dependent baths. We start from the pulse

Hamiltonian in Eq. (3). We describe the time-dependent pulse

operator as a global rotation about the axis â(t):

P (t) = exp

(

− i �σ · â(t)
ψ(t)

2

)

, (7)

where |â(t)| = 1. The spin is turned by the angle ψ(t) at the

time t . Every unitary operator acting only on the Hilbert space

of the spin can be written in the form of Eq. (7). In particular,

a pulse that turns the spin by an angle χ satisfies

ψ(τp) = χ. (8)
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We stress the difference between the current axis of rotation

�v(t)/ |�v(t)| and the effective axis â(t) describing the total

rotation of the spin from its position at time 0 to its current

position at time t .

By definition the pulse operator fulfills the Schrödinger

equation

i∂tP (t) = Hv(t)P (t), (9)

which implies [29]

2�v(t) = ψ ′(t)â(t) + â′(t) sin ψ(t)

−[1 − cos ψ(t)][â′(t) × â(t)]. (10)

This differential equation is solved numerically for the

frequency-modulated ansatz below. The time evolution of the

whole system is given by

i∂tU (t) = [Hb(t) + �σ · �A(t) + Hv(t)]U (t). (11)

Inserting the ansatz (5) and solving for ∂tUc(t) yields

i∂tUc(t) = G(t)Uc(t) (12)

G(t) = P −1(t)U−1
b (t) �σ · �A(t) Ub(t)P (t). (13)

Thus the unitary correction is determined by a Schrödinger

equation with G(t) as its time-dependent Hamiltonian. The

formal solution of Eq. (12) in terms of the standard time

ordering operator is

Uc(t) = T

[

exp

(

− i

∫ t

0

G(τ )dτ

)]

. (14)

Aiming at an expansion of Uc(t) in powers of τp it is convenient

to use the Magnus expansion [38] to express the time-ordered

exponential

Uc(τp) = exp[−iτp(G(1) + G(2) + · · · )], (15)

where G(i) = O(τ i−1
p ). The first two terms read

τpG
(1) =

∫ τp

0

dtG(t), (16a)

τpG
(2) = −

i

2

∫ τp

0

dt1

∫ t1

0

dt2[G(t1),G(t2)]. (16b)

Next, we need an expansion of G(t) in powers of time. To

this end, we consider the representation (7) which implies

P −1(t)�σ · �A(t)P (t) = [cos ψ �A − sin ψ(â × �A)

+ (1− cos ψ)(â · �A)â] · �σ (17a)

= �nA(t)(t) · �σ (17b)

=
∑

i,j

ni,j (t)Aj (t)σi, (17c)

where the time dependencies on the right-hand side of

Eq. (17a) are omitted to lighten the notation. The vector

operator �nA(t)(t) is the vector �A(t) after a rotation about the

axis â(t) by the angle −ψ(t). The corresponding rotation

matrix Dâ(−ψ) is given by its matrix elements ni,j (t); for

their explicit form see Appendix C. Due to the orthogonality

of Dâ(−ψ) the moduli of all its matrix elements are bounded

by unity.

Note that there are two different kinds of time dependence

in Eq. (17b). On the one hand, the time dependence of �A(t)

becomes weaker and weaker as the pulse duration τp is taken

to zero because we assume that �A(t) is analytical. This is

exploited below. On the other hand, the time dependence of

the ni,j (t) scales with τp, which means that ñi,j (s) := ni,j (sτp)

is completely independent of τp because the pulse has to be

completed at t = τp whatever the pulse duration is.

We proceed by introducing the vector operator Ã(t) and

expanding it in powers of t :

Ã(t) := U−1
b (t)A(t)Ub(t) (18a)

= �A0 + it[Hb,0, �A0] + t �A1 + O(t2). (18b)

Here the main differences to the derivation in Ref. [30]

arises. In Ref. [30], the term proportional to �A1 did not appear

because the bath was considered to be time-independent. Using

the vector operator �nA(t)(t) from Eq. (17b) we rewrite G(t)

concisely as

G(t) = P −1(t)�σ · Ã(t)P (t) (19a)

= �nÃ(t)(t) · �σ . (19b)

This form of G(t) can be expanded in powers of t such that

the neglected terms are of second order in τp for t ∈ [0,τp]:

G(t) = �nA0
· �σ + t

(

i
[

Hb,0,i �σ · �nA0

]

+ �nA1
· �σ

)

+ O
(

τ 2
p

)

.

(20)

Note that the time dependence stemming from the pulse

rotation is not expanded because it does not change on τp → 0.

Physically this means that one can expand in τpH (t), i.e., in

λτp and in ωbτp, but not in τpHv(t) because the magnitude

of Hv(t) is increased on τp → 0 to realize the desired

pulse.

Inserting Eq. (20) in the terms of the Magnus expansion

(16) eventually yields

Uc(τp) = exp[−i(η(1) + η(2) + · · · )], (21a)

η(1) =
∑

i,j

σiAj,0

∫ τp

0

ni,j (t)dt, (21b)

η(2) =
∑

i

σi

(

η
(2a)
i + η

(2b)
i

)

+ η(2c), (21c)

where η(i) ∝ τ i
p . Explicitly, one has

η
(2a)
i =

∑

j

([Hb,0,Aj,0] − iAj,1)

∫ τp

0

t ni,j (t)dt, (22a)

η
(2b)
i =

∑

l,m

[Al,0,Am,0]+

∫ τp

0

dt1

∫ t1

0

dt2

×
∑

j,k

ǫijknj,l(t1)nk,m(t2), (22b)

η(2c) =
∑

i,j<k

[Aj,0,Ak,0]

∫ τp

0

dt1

∫ t1

0

dt2

×[ni,j (t1)ni,k(t2) − ni,j (t2)ni,k(t1)]. (22c)

In these equations the anticommutator [·,·]+ and the

completely antisymmetric Levi-Civita tensor ǫijk appear. The
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indices i, j , k, l, and m take one of the values x, y, or z. Most

of the Eqs. (21b) and (22) are identical to those obtained in

Ref. [30]. Only in η
(2a)
i does the time dependence of the bath

appear additionally. It is encoded in the operators Aj,1, which

are zero for a time-independent bath.

The second-order equations (22) do not show a dependence

on pure bath terms of an order higher than Hb,0. This means that

the time dependence of the pure bath Hamiltonian is irrelevant

up to second order. This is reasonable because even for a

time-independent bath the actual bath dynamics induced from

Hb appears only in second-order conditions. This does not

apply to the vector operator �A(t) which is already relevant in

first-order pulses.

In the general case of a completely generic bath, all the

expressions η(α), α ∈ {1,2a,2b,2c}, have to vanish in order

to fulfill Uc = 1 + O(τ 3
p). The pulse shape determines the

time evolution of the matrix elements ni,j . Hence, in order

to fulfill all the conditions the operator-independent integrals

in Eqs. (21b) and (22) must disappear. The resulting 39 scalar

equations are identical to those obtained in Ref. [30].

This is our first key result. It proves the applicability of the

previously obtained pulses even in the presence of a nontrivial

time dependence of the bath which may stem from special

reference frames or from the interaction picture of fast modes.

For specific cases, such as the pure dephasing model or if

[Hb(t), �A(t)] = 0 the number of scalar equations to be fulfilled

for Uc = 1 + O(τ 3
p ) is reduced significantly. Pulses with less

complexity can be used. This is studied in the sequel.

IV. FREQUENCY MODULATED ANSATZ

To solve Eq. (10) we choose an ansatz for �v(t). In this paper

we focus on a frequency-modulated pulse acting only in the

σxσy plane with a fixed amplitude V0 := |�v| and the current

axis of rotation

�v(t) =





V0 cos[�(t)]

V0 sin[�(t)]

0



 , (23)

where �(t) is a time-dependent phase. Note the difference

to pulses with a time-dependent amplitude and a fixed axis

discussed, for instance, in Refs. [16,27,30]. We focus here

on frequency modulation in complement to previous work

because there may be experimental setups where frequency

modulation is much easier (or more accurately) implemented

than amplitude modulation. Note that the ansatz (23) assumes

that the control pulse can be switched on instantaneously.

Transients are assumed to be sufficiently steep to be taken

as jumps. The consideration of continuous amplitudes and

frequency modulation is left to future research.

To point out the relation of the ansatz (23) to the experi-

mental realization in the laboratory framework we consider a

spin with a Larmor frequency ωL in the NMR language [39]:

Hz = −
ωL

2
σz. (24)

Of course, this description is not restricted to nuclear

spins. Any two-level system with an energy splitting can

be considered. The control field is realized by applying a

field perpendicular to the σz axis rotating with the Larmor

frequency:

Hrf = V0{σx cos[ωLt − �(t)] − σy sin[ωLt − �(t)]}. (25)

We include a time-dependent phase �(t) to shape the pulse.

Its derivative ∂t�(t) is the deviation of the frequency from

the Larmor frequency. In this sense Eq. (25) describes a

frequency-modulated pulse. Next, Hrf is transformed into the

rotating framework in which Hz vanishes. Using the unitary

time evolution induced by Hz

Urot(t) = exp

(

i
ωL

2
tσz

)

, (26)

we obtain Hrot(t) = U
†
rotHrfUrot, which reads

Hrot(t) =





V0 cos[�(t)]

V0 sin[�(t)]

0



 ·





σx

σy

σz



 = �v(t) · �σ . (27)

In order to find â(t) and ψ(t) appearing in the parametriza-

tion in Eq. (7) of the pulse one has to solve the differential

equation (10). Because â(t) is a unit vector, it is convenient to

describe it by two angles ϕ(t) and θ (t):

â(t) =





sin[θ (t)] cos[ϕ(t)]

sin[θ (t)] sin[ϕ(t)]

cos[θ (t)]



 . (28)

Solving Eq. (10) for the time derivatives of ψ(t), ϕ(t), and

θ (t), we find

∂tψ = 2V0 sin θ [sin � sin ϕ + cos � cos ϕ] , (29a)

∂tϕ=V0

[cos
ψ

2
sin(�−ϕ)− sin

ψ

2
cos θ cos(� − ϕ)]

sin
ψ

2
sin θ

, (29b)

∂tθ=V0

[cos
ψ

2
cos θ cos(�−ϕ)+ sin

ψ

2
sin(�−ϕ)]

sin
ψ

2

. (29c)

The seeming singularities for vanishing angles on the right-

hand sides of Eqs. (29b) and (29c) have no physical reason,

but they only result from the choice of spherical coordinates

and from the chosen parametrization in Eq. (7). Note that the

global axis of rotation â is not uniquely defined if ψ is a

multiple of 2π .

At the very beginning at t = 0 the current axis of rotation �v
and the global one �a coincide. The former lies by construction

in the σxσy plane. Hence we have the initial conditions

lim
t→0

θ (t) =
π

2
, (30a)

lim
t→0

ψ(t) = 0, (30b)

lim
t→0

ϕ(t) = �(0), (30c)

where the latter two equations represent our deliberate choice.

Inspecting the limit t → 0 one additionally finds

2∂tϕ|t=0 = ∂t�(t)|t=0, (31a)

∂tθ |t=0 = 0. (31b)
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The derivative ∂tψ follows trivially from Eq. (29a). In the

next section, we provide solutions for this ansatz and a specific

case of spin-bath coupling.

V. RESULTS

We are interested in the experimentally important case of a

purely dephasing model, i.e., a bath coupled only via σz to the

spin

�A(t) = A(t)�ez. (32)

Hence the coupling becomes simpler, but the bath dynamics

itself is still kept in full generality. Spin flips do not occur

in this model so that T1 is infinite. But decoherence of the

T2 type is entirely kept. This assumption is justified in many

experimental realizations. Moreover, the simplification of the

coupling is advantageous for pulse shaping because it reduces

the number of integral conditions derived from Eqs. (21b) and

(22) in second order to be fulfilled from 39 to 3 first-order

conditions and 6 second-order conditions which are given

explicitly in Appendices A and B.

In the following, we present continuous pulses which fulfill

the first-order conditions (first-order pulses) and pulses which

fulfill all first- and second-order conditions (second-order

pulses) for pure dephasing as in Eq. (32). Thereby, we provide

optimized pulses that decouple the spin from the bath during

the duration of the pulse up to O(τ 3
p ).

In order to consider a continuous frequency modulation we

use the Fourier series ansatz

�(t)=
∑

n

b2n−1 sin(2πnt/τp)+b2n[cos(2πnt/τp)−1] (33)

for �(t). We consider π and π/2 pulses because of their

frequent use in QIP and NMR. Therefore, the pulse has to

fulfill

ψ(τp) = π or π/2 (34)

for π pulses and π/2 pulses, respectively, according to Eq. (8).

The value θ (τp) is fixed by the fact that the final axis of rotation

TABLE I. Overview of the pulses satisfying all first-order equa-

tions (21b). FM-1-PI denotes the frequency-modulated π pulse. FM-

1-PI2 denotes the frequency-modulated π/2 pulse. The dimensionless

coefficients bn belong to the ansatz in Eq. (33). The amplitudes V0

are given in units of 1/τp. With all eight digits given the conditions

are fulfilled for the π pulse within 10−10 and for the π/2 pulse within

10−9. With only two digits they are fulfilled within 10−3 and 10−2,

respectively.

First-order pulses

FM-1-PI FM-1-PI2

V0 3.751 466 09 V0 4.928 924 84

b1 0.000 114 42 b1 0.000 098 74

b2 −1.093 471 12 b2 −0.943 316 59

b3 0.000 124 43 b3 0.000 025 30

b4 −0.594 525 72 b4 −0.120 876 63
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FIG. 1. (Color online) First-order π pulse FM-1-PI. We also plot

sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) to illustrate the pulse shape in

spin space. The left scale refers to �(t) and the right scale to sin �(t)

and cos �(t), respectively. The Fourier coefficients for this pulse are

given in Table I.

has to be perpendicular to σz to rotate the spin by the full angle

ψ(τp). Thus we require

θ (τp) =
π

2
. (35)

For a given ansatz, Eq. (33), the numerical procedure to

find solutions is straightforward. We solve the differential

equations (29) using a fourth-order Runge-Kutta algorithm.

For this solution the conditions (21b), (22), (8), and (35) are

evaluated. We search for roots using the Powell hybrid method

in the GNU scientific library [40].

Of two different pulses the one with the lower amplitude

V0 is preferable in experiment because less power is needed

to realize it. For an experimentally realizable maximum

amplitude this implies that the theoretical pulse with lower am-

plitude can be made shorter, which is definitely advantageous.
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FIG. 2. (Color online) First-order π/2 pulse FM-1-PI2. We also

plot sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) to illustrate the pulse shape

in spin space. The left scale refers to �(t) and the right scale to sin �(t)

and cos �(t), respectively. The Fourier coefficients for this pulse are

given in Table I.
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TABLE II. Overview of the pulses satisfying all first- and second-

order equations, Eqs. (21b) and (III). FM-2-PI and FM-2-PI2 denote

the frequency-modulated π pulse and π/2 pulse, respectively. The

dimensionless coefficients bn belong to the ansatz in Eq. (33). The

amplitudes V0 are given in units of 1/τp. With all eight digits given

the conditions are fulfilled for the π pulse within 10−10 and for the

π/2 pulse within 10−11. With only two digits they are fulfilled within

10−2 and 10−2, respectively.

Second-f order pulses

FM-2-PI FM-2-PI2

V0 12.834 329 79 V0 12.256 193 90

b1 0.114 751 39 b1 1.730 718 40

b2 0.172 485 87 b2 0.735 299 59

b3 0.482 625 21 b3 0.232 425 23

b4 −1.144 948 51 b4 −0.248 293 10

b5 −0.208 790 91 b5 −0.071 022 04

b6 0.253 780 13 b6 −0.131 923 80

b7 0.203 068 35 b7 1.079 482 26

b8 −0.167 480 22 b8 0.122 200 06

b9 −0.320 522 54 b9 0.046 089 86

b10 0.325 862 03 b10 −0.153 656 17

Hence we search for pulses with lower amplitude among

the second-order pulses. This is done by using an additional

coefficient bm in the ansatz (33) and minimizing the amplitude

V0 of the resulting solutions by varying this additional

coefficient.

A. First-order pulses

For first-order pulses and the pure dephasing model, the set

of conditions (21b) comprises only three equations given in

Appendix A. Adding conditions (34) and (35) five parameters

are necessary to construct first-order pulses. One parameter

is the amplitude V0 and the others are the coefficients bn in

ansatz (33). The characteristics of the pulses are reported in
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FIG. 3. (Color online) Second-order π pulse FM-2-PI. We also

plot sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) to illustrate the pulse shape

in spin space. The left scale refers to �(t) and the right scale to sin �(t)

and cos �(t), respectively. The Fourier coefficients for this pulse are

given in Table II.
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FIG. 4. (Color online) Second-order π/2-pulse FM-2-PI2. We

also plot sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) to illustrate the pulse

shape in spin space. The left scale refers to �(t) and the right scale to

sin �(t) and cos �(t), respectively. The Fourier coefficients for this

pulse are given in Table II.

Table I. The pulses are plotted in Figs. 1 and 2. Note that

the composite and continuous amplitude-modulated pulses

found in Ref. [30] have comparable amplitudes for first-order

pulses.

B. Second-order pulses

Second-order pulses additionally have to fulfill conditions

(22). These equations again simplify for a purely dephasing

bath leading to six additional integral conditions besides the

first-order terms see Appendix B. Note that more equations are

to be fulfilled than for amplitude modulation [30] because the

frequency-modulated pulses involve all three spin directions.

The solutions for π and π/2 pulses are given in Table II

and they are displayed in Figs. 3 and 4. Numerically, the

double integrals in Eqs. B2 are particularly demanding. Full

quantum mechanical studies of higher-order pulses will be

hampered by even higher dimensional integrals occurring in

the Magnus expansion [38]. An alternative route, which may

be numerically more efficient, consists of the direct solution

of the Schrödinger equation [24]. The mathematical existence

of higher-order pulses is known [31].

Since we are interested in pulses with low amplitudes, we

aim at minimizing the amplitude. To this end, we add another

Fourier coefficient to the ansatz (33) and vary this additional

parameter. In this way, we obtained the pulses FM-2-MIN-PI

and FM-2-MIN-PI2 given in Table III and plotted in Figs. 5

and 6. Empirically it turned out to be more efficient to consider

b14 instead of b11 as an additional coefficient. It is expected

that even lower amplitudes can be achieved by using further

coefficients. But our calculations with different coefficients,

not shown here, indicate that this route would improve the

amplitude only by 1%–2% at the expense of a more complex

pulse shape.

By using only one free coefficient (b14) we found π/2

pulses with amplitudes lower than 9.0/τp to be compared

with the amplitude-modulated pulses [30] with amplitude

11.5/τp. For π pulses we need V0 = 10.7/τp in comparison
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TABLE III. Overview of the pulses satisfying all first- and second-

order equations, Eqs. (21b) and (22), with minimized amplitude.

FM-2-PI and FM-2-PI2 denote the frequency-modulated π pulse and

π/2 pulse with minimized amplitude, respectively. The dimensionless

coefficients bn belong to the ansatz in Eq. (33). The amplitudes V0

are given in units of 1/τp. With all eight digits given the conditions

are fulfilled for the π pulse within 10−10 and for the π/2 pulse within

10−9. With only two digits they are fulfilled within 10−3 and 10−1,

respectively.

Minimized second-order pulses

FM-2-MIN-PI FM-2-MIN-PI2

V0 10.707 114 54 V0 8.435 414 12

b1 0.000 020 87 b1 −1.820 415 07

b2 1.387 689 38 b2 −0.352 491 97

b3 −0.000 199 22 b3 0.030 548 74

b4 −0.706 689 98 b4 0.520 935 76

b5 −0.000 015 88 b5 −0.555 044 40

b6 0.137 730 85 b6 −0.388 155 68

b7 0.000 087 70 b7 0.451 673 61

b8 0.688 943 31 b8 −0.194 450 80

b9 −0.000 114 08 b9 −0.161 948 06

b10 −0.697 440 86 b10 −0.282 233 30

b14 0.465 019 91 b14 0.045 858 97

to 11.0/τp for amplitude modulation. The amplitudes of

the amplitude-modulated pulses refer to piecewise constant

pulses; for continuous pulses they are even higher. Of course,

the reduction of the amplitudes for frequency-modulated

pulses is not spectacular. But it is remarkable that pulses

with relatively low amplitudes can be found despite the larger

number of conditions to be fulfilled: the frequency-modulated

pulse fulfills 9 + 2 = 11 equations including the conditions

for the angles, and the amplitude-modulated pulse fulfills

5 + 1 = 6 conditions including the condition for the rotation

angle.
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FIG. 5. (Color online) Minimized second-order π pulse FM-2-

MIN-PI; sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) show the pulse shape

in spin space. The left scale refers to �(t) and the right scale to

sin �(t) and cos �(t), respectively. The Fourier coefficients for this

pulse are given in Table III.
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FIG. 6. (Color online) Minimized second-order π/2 pulse FM-

2-MIN-PI2. We also plot sin �(t) ∝ vy(t) and cos �(t) ∝ vx(t) to

illustrate the pulse shape in spin space. The left scale refers to �(t)

and the right scale to sin �(t) and cos �(t), respectively. The Fourier

coefficients for this pulse are given in Table III.

VI. CONCLUSIONS

In this paper we extended the existing perturbative approach

to decouple a spin from a quantum mechanical bath by means

of short control pulses in two ways.

First, we allowed for a time-dependent bath, which means

both the bath Hamilton operator and the coupling operators

may have an explicit, analytical time dependence. Yet, we

found that this time dependence does not alter the requirements

for the pulse shape which were derived previously for time-

independent baths [30]. Hence, the pulses found previously

are also applicable for time-dependent environments as they

arise, for instance, in time-dependent reference frames or

in the interaction picture of otherwise time-independent

Hamiltonians. This is our first key result.

Second, we studied frequency-modulated pulses in first

order and in second order in the pulse duration τp for quantum

mechanical baths. Previously, only amplitude modulation

was considered explicitly for quantum mechanical baths

[16,27,30]. Frequency modulation was so far studied for static

baths only [23]. We provide explicit solutions for continuous

frequency-modulated pulses with amplitudes which have been

minimized empirically. Such pulses are expected to be useful

in experiments where no amplitude modulation can be realized

or where the achievable accuracy for frequency modulation is

superior to the accuracy of amplitude modulation. For instance,

they can be used to implement realistic optimized dynamic

decoupling [33,34] where the dynamic decoupling sequence

is adapted to pulses of finite length. The frequency-modulated

pulses constitute our second key result.

We emphasize that modulated pulses correspond to quan-

tum gates which are robust against decoherence in the

framework of quantum-information processing, e.g., the π/2

pulse about σy preceded by a π pulse about σz realizes the

important Hadamard gate up to a global factor i.1

1This fact was stated in Refs. [28] and [29] in a too shortened way,

leaving out the π pulse.
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Further work should concentrate on higher-order terms

not studied here. Such terms comprise higher-dimensional

integrals so that the numerical effort increases considerably.

Another promising route is to extend the model from pure

dephasing to general decoherence. This would allow for

systems with finite T1 as well, at the expense of more complex

pulses.

But at the present stage, it is also called for to verify the

performance of the proposed pulses experimentally in order to

assess how promising further extensions would be.
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APPENDIX A: FIRST-ORDER CONDITIONS

For the first-order conditions we inspect Eq. (21b) to find the

corresponding scalar equations. In a purely dephasing bath the

sum over j collapses to j = z, resulting in the scalar equations

η11=

∫ τp

0

ay(t) sin[ψ(t)]−[1− cos(ψ)]ax(t)az(t)dt, (A1a)

η12=

∫ τp

0

ax(t) sin[ψ(t)]+[1− cos(ψ)]ay(t)az(t)dt, (A1b)

η13 =

∫ τp

0

cos[ψ(t)] + [1 − cos(ψ)]az(t)
2dt. (A1c)

The ai are the components of the global axis of rotation

parametrized in Eq. (28).

APPENDIX B: SECOND-ORDER CONDITIONS

For the second-order conditions, we additionally have to

consider Eqs. (22) to find the corresponding scalar equations.

Again certain sums collapse due to the purely dephasing bath

model and we eventually obtain

η21 =

∫ τp

0

t{ay(t) sin[ψ(t)]−[1−cos(ψ)]ax(t)az(t)}dt, (B1a)

η22 =

∫ τp

0

t{ax(t) sin[ψ(t)]+[1− cos(ψ)]ay(t)az(t)}dt, (B1b)

η23 =

∫ τp

0

t{cos[ψ(t)] + [1 − cos(ψ)]az(t)
2}dt, (B1c)

and

η24 =

∫ τp

0

dt1

∫ t1

0

dt2[nyz(t1)nzz(t2)−nzz(t1)nyz(t2)], (B2a)

η25 =

∫ τp

0

dt1

∫ t1

0

dt2[nzz(t1)nxz(t2)−nxz(t1)nzz(t2)], (B2b)

η26 =

∫ τp

0

dt1

∫ t1

0

dt2[nxz(t1)nyz(t2)−nyz(t1)nxz(t2)]. (B2c)

The matrix elements nij (t) occurring here are those of the

rotation matrix Dâ(−ψ) given explicitly in Eq. (C1). The

components ai are parametrized in Eq. (28).

APPENDIX C: ROTATION MATRIX

To derive the matrix Dâ(−ψ) we refer the reader to

Ref. [30]. It is calculated by comparison of the coefficients

in Eq. (17a). We obtain the matrix (C1) below, where the time

dependencies of ψ(t) and â(t) are omitted for clarity:

Dâ(−ψ) =





cos ψ + (1 − cos ψ)a2
x az sin ψ + (1 − cos ψ)axay −ay sin ψ + (1 − cos ψ)axaz

az sin ψ + (1 − cos ψ)axay cos ψ + (1 − cos ψ)a2
y ax sin ψ + (1 − cos ψ)ayaz

ay sin ψ + (1 − cos ψ)axaz −ax sin ψ + (1 − cos ψ)ayaz cos ψ + (1 − cos ψ)a2
z



 . (C1)
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