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Frequency-modulated pulses for quantum bits coupled to time-dependent baths
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We consider the coherent control of a quantum bit by the use of short pulses with finite duration t,,. By shaping
the pulse, we perturbatively decouple the dynamics of the bath from the dynamics of the quantum bit during
the pulse. Such shaped pulses provide single quantum bit gates robust against decoherence which are useful
for quantum-information processing. We extend previous results in two ways: (i) we treat frequency-modulated
pulses and (ii) we pass from time-independent baths to analytically time-dependent baths. First- and second-order
solutions for 7 and 7/2 pulses are presented. They are useful in experiments where amplitude modulation is

difficult to realize.
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I. INTRODUCTION

The occurrence of decoherence in quantum systems is one
of the main difficulties to be overcome in modern experiments.
Especially quantum-information processing (QIP) requires the
quantum system to remain in fixed phase relations between the
application of quantum gates. Otherwise one cannot benefit
from the quantum parallelism making QIP such a powerful
technique.

A generic example for a quantum bit (qubit) is a spin § =
1/2. One of the first implementations of a quantum algorithm
was realized with nuclear magnetic resonance (NMR) [1]. The
qubits are encoded in the nuclear spin degrees of freedom. We
also use the spin language to describe the states and dynamics
of the qubit. The state 1 is identified with the logical |1) and
the state | with the logical |0).

The loss of coherence is induced by the coupling of the spin
to its environment, the so-called bath. One way to suppress
this coupling is the application of suitable control pulses
first introduced by Hahn in 1950 [2] for NMR experiments.
This idea led to the development of sequences for control
pulses ranging from the Carr-Purcell-Meiboom-Gill (CPMG)
cycle [3,4] to more and more complex control schemes [5].
In QIP, this approach is known under the name of dynamic
decoupling (DD) [6-8]. Theoretically, dynamic decoupling
can be achieved to infinite order in the duration 7 of the total
pulse sequence [9,10]. One particularly efficient way to deal
with pure dephasing decoherence is the use of theoretically
optimized DD (Uhrig DD) [11-13]. It has been successfully
implemented experimentally [14,15].

The pulses considered in theoretical studies of DD schemes
are mostly ideal in the sense that they have an infinite amplitude
and that they act instantaneously in time corresponding to
Dirac § pulses. Of course, this property cannot be realized in
experiments. If the finite pulse duration is taken into account
in calculations, it turns out to be a nuisance in most cases
(see, for instance, Refs. [10,16]). Hence, there is an abundant
literature on pulse shaping and optimization which we can
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mention only partly [16-31] (for a book see Ref. [32]).
We emphasize, however, that a suitably shaped pulse can
be integrated into a DD sequence such that the high-order
suppression of decoherence is hardly hampered [33,34].

The majority of the existing theoretical studies of pulse
shaping consider pulses acting on the two-dimensional Hilbert
space. The goal is to design robust pulses which tolerate a
maximum of frequency offset or other inaccuracies of the
pulse [17-23,26]. The next stage of complexity includes
random time-dependent classical noise, which is still described
by classical fields coupled to the spin [25]. The maximum
stage of complexity considers a fully quantum mechanical
bath which means that the qubit is coupled to a macroscopic
quantum mechanical system by noncommuting operators
[16,24,27-31]. It is on this level that our present study is
situated. We stress that a quantum mechanical pulse, which
is robust against a coupling to its environment, constitutes an
appropriate single-qubit gate.

In particular, we extend previous work [30] in two ways:
(i) We allow for analytically time-dependent bath operators,
both in the spin-bath coupling and in the Hamiltonian of
the bath. Such time dependence may, for instance, arise
from a time-dependent reference frame [35]. (ii) We propose
frequency-modulated pulses while before only amplitude-
modulated pulses were studied [16,24,27,28,30,31] except in
the general no-go theorem in Ref. [29]. We stress that in the
NMR context amplitude and phase-modulated pulses have
been discussed intensively [21-23]. But to our knowledge
these investigations do not comprise quantum mechanical
baths nor dynamic classical noise.

Explicitly, we compute continuous solutions for 7 and /2
pulses realized by frequency modulation (see also Ref. [23]).
The consideration of frequency modulation is motivated from
experimental situations where the frequency of a pulse can be
controlled more accurately or more easily than its amplitude.
Thus the present study is complementary to preceding ones.

The paper is organized as follows: In Sec. II, we give an
overview of the model under study and motivate our ansatz for
the time evolution of the whole system. In Sec. III we derive
the perturbative expansion for a generic time-dependent bath.
We require that the time dependence is analytical in order to
be able to apply a perturbative approach. Then we introduce
the frequency-modulated ansatz in Sec. IV and specialize the
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general equations for this specific case. The solutions found
for first- and second-order pulses are discussed in Sec. V and
we finally conclude in Sec. VI.

II. MODEL AND ANSATZ

We consider the general case of a spin coupled to a time-
dependent bath

H(t) = Hy(1) + 5 - At), (1)

where H,(t) denotes the part of the Hamiltonian that acts only
on the bath. We refer to it as the bath Hamiltonian. The vector of
Pauli matrices o acts on the Hilbert space of the spin § = 1/2
while A(#) is a vector of bath operators to which the spin is
coupled. No special operator structure is assumed for the bath
operators; i.e., the commutators [A; (), A; (1)], [Ai(t'),A; ()],
and [A;(#"), Hy(¢)] do not need to vanish.

The model (1) comprises typical cases such as a bosonic
bath or a spin network. Relevant experimental systems com-
prise the electronic spin in a quantum dot coupled to the bath
of nuclear isotope spins [36] or the spin of a nitrogen vacancy
center in diamond interacting again with a bath of nuclear
isotope spins [37]. For our purposes, we require that the time
dependence of the operators Hy(¢) and A(¢) is analytical so
that they can be expanded in time:

A(I)Zgo+glt+ggt2+~'~, (Za)
Hy(t) = Hy o+ Hy 1t + Hpot* + -+ . (2b)

This analyticity is often fulfilled, e.g., in rotating reference
frames or in the operator interaction picture. For fast time-
dependencies, however, the above expansion is not useful
because the derivatives are large. Very fast oscillatory time-
dependencies are better treated by average Hamiltonian theory.

Our model includes the common case of a purely dephasing
bath, i.e., a spin coupled only along the o, direction to the bath.
This model is justified in experiments where the dephasing
time 7, is significantly lower than the longitudinal relaxation
time 7). This is the case if the energetic splitting between the
states with o, = 1 and o, = —1 is large.

The coupling strength between the spin and the bath is given
by A := ||K(t)|| while the energy of the bath is defined to be
wy = ||Hp(2)|]. If these operators are not bounded, that means
if A and w} cannot be defined by the operator norms, we refer
by A and wy to the generic energy scales of the corresponding
operators. For instance, in a bosonic bath wy, is the upper cutoff
of the bosonic energy spectrum. The energy scales serve as
reference values for 7,. That means that we aim at an expansion
in the dimensionless ratios w, T, and Atp,.

Applying the control pulse to the system, the term

Hy(1) =& - 0(1) (3)

is added to the Hamiltonian H(¢). Here v(¢) is a vector of
amplitudes describing the controllable time-dependent shape
of the pulse. The normalized vector ¥(¢)/ |v(¢)] is the current
axis of rotation at time ¢ while the norm |v(¢)| describes the
magnitude of the control term which determines the velocity of
rotation. Without loss of generality, we assume that the pulse
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starts at t = 0 and ends at ¢ = 1;,. The time evolution between
0 and 7, of the combined system reads

U(t) = T[epq)<—i/r H(t)dt —i/rHv(t)dtﬂ, 4)
0 0

where T stands for the standard time ordering.

Our aim is to perturbatively decouple the time evolution of
the spin from the time evolution of the bath during the pulse.
This motivates the following ansatz for the time evolution of
the whole system

U(Tp) = Ub(Tp)P(Tp)Uc(Tp), )
where
Up(t) =T exp < —1 / Hb(t/)dt/>, (6a)
0
P(t) ;=T exp ( — i&-/ T)(t’)dt/). (6b)
0

The unitary operator Uy(7,) describes the time evolution
of the bath and P(t,) the rotation of the spin due to the
pulse. Note that the ansatz Uy (t,) P(tp) does not comprise any
coupling between spin and bath. It is close to the goals of many
previous studies aiming at robust pulses [17-23,25,26] and it
corresponds to the ansatz used in previous studies separating
the pulse from a classcial [25] or a quantum mechanical
dynamics of the bath [16,24,27,30,31]. We emphasize that
an ansatz which separates the pulse from the dynamics of the
spin plus bath system can be shown not to succeed beyond
leading order [28,29].

Since the spin-bath coupling is not included in Uy (1) P(7})
we introduced the correction unitary operator U¢(7,) in Eq. (5).
We want to shape the pulse so that the correction term is as
close to the identity as possible. A perfect decoupling would
imply U.(tp) = 1. But this is unrealistic to achieve. Hence we
pursue the perturbative approach to make as many terms of an
expansion in T, as possible vanish. Then U(z,) ~ Uy(7,) P(1p)
represents a valid approximation and one can neglect the spin-
bath coupling during the pulse. We remark that pulses shaped
in this way constitute robust single-qubit gates.

III. DERIVATION

The derivation of the perturbative conditions for the shaped
pulses is very similar to the derivation given in Ref. [30]. Yet we
present a brief outline here in order to keep the present article
self-contained and because we extend the previous derivation
to analytically time-dependent baths. We start from the pulse
Hamiltonian in Eq. (3). We describe the time-dependent pulse
operator as a global rotation about the axis a(t):

. t
P(t) = exp ( —io -&(t)?), @)
where |a(t)| = 1. The spin is turned by the angle 1(¢) at the
time 7. Every unitary operator acting only on the Hilbert space

of the spin can be written in the form of Eq. (7). In particular,
a pulse that turns the spin by an angle x satisfies

V() = X. ®)
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We stress the difference between the current axis of rotation
v(t)/ |v(z)| and the effective axis a(z) describing the total
rotation of the spin from its position at time O to its current
position at time .

By definition the pulse operator fulfills the Schrédinger
equation

10, P(t) = Hy, (1) P(t), )
which implies [29]

20(t) = y'(ta(r) + a'(¢) sinyr(r)
—[1 —cosy[a'(r) x a®)]. (10)
This differential equation is solved numerically for the

frequency-modulated ansatz below. The time evolution of the
whole system is given by

i9,U(t) = [Hy(t) + & - A(t) + Hy(OIU (1) (11)
Inserting the ansatz (5) and solving for 9, U.(¢) yields

10, Uc(r) = G()U.(1) (12)

G(t) = P_l(t)Ul:l(t)c? “A@) Up(t)P(2). (13)

Thus the unitary correction is determined by a Schrédinger
equation with G(¢) as its time-dependent Hamiltonian. The

formal solution of Eq. (12) in terms of the standard time
ordering operator is

U.(t) = T[exp < — i/ G(t)dr>:|. (14)
0

Aiming at an expansion of U, (¢) in powers of 7, itis convenient
to use the Magnus expansion [38] to express the time-ordered
exponential

Ue(tp) = expl—itp(G" + GP +-- )], (15)

where G® = O(z;™"). The first two terms read

5,G = / " d1G (), (16a)
0

l' Tp n
7,G? = —5/ dn/ db[G(),G()].  (16b)
0 0

Next, we need an expansion of G(¢) in powers of time. To
this end, we consider the representation (7) which implies

PN ()G - A()P(t) = [cos Yy A — sin (@ x A)
+(1—cos¥)@-A)al-o (17a)
=fap(1) -0 (17b)

=Y ni (A1), (17¢)
iJj

where the time dependencies on the right-hand side of
Eq. (17a) are omitted to lighten the notation. The vector
operator 74()(t) is the vector A(r) after a rotation about the
axis a(t) by the angle —y(¢). The corresponding rotation
matrix D;(—1) is given by its matrix elements n; ;(t); for
their explicit form see Appendix C. Due to the orthogonality
of D;(—1) the moduli of all its matrix elements are bounded
by unity.

PHYSICAL REVIEW A 85, 022310 (2012)

Note that there are two different kinds of time dependence
in Eq. (17b). On the one hand, the time dependence of A(¢)
becomes weaker and weaker as the pulse duration 1, is taken
to zero because we assume that K(t) is analytical. This is
exploited below. On the other hand, the time dependence of
the n; ;(t) scales with 7, which means that 7i; ;(s) := n; ;(sTp)
is completely independent of 7, because the pulse has to be
completed at r = 7, whatever the pulse duration is.

We proceed by introducing the vector operator A(t) and
expanding it in powers of ¢:

(18a)
(18b)

A1) = Uy () A@)Un(1)
= Ao+ it[Hyo. Aol + tA; + O(t?).

Here the main differences to the derivation in Ref. [30]
arises. In Ref. [30], the term proportional to A; did not appear
because the bath was considered to be time-independent. Using
the vector operator 7 4¢)(¢) from Eq. (17b) we rewrite G(t)
concisely as

G@t)= P '(t)o - A(t)P(1)

=niu(1) 0.

(19a)
(19b)

This form of G(¢) can be expanded in powers of ¢ such that
the neglected terms are of second order in 7, for ¢ € [0,7,]:

G(t) =1, 6 +1(i[Hy0.i0 - 7ia, | +17ia, - ) + O(77).
(20)

Note that the time dependence stemming from the pulse
rotation is not expanded because it does not change on 7, — 0.
Physically this means that one can expand in 7, H(?), i.e., in
ATy and in wyTp, but not in 7, H,(t) because the magnitude
of H,(t) is increased on 7, — 0 to realize the desired
pulse.

Inserting Eq. (20) in the terms of the Magnus expansion
(16) eventually yields

Ue(tp) = expl—i(n" + 1@ + - )], (21a)
k3
M= oA} / n j(0dt, (21b)
— 0
LJ
n® =3 o0 +n) + 0%, 2le)
where ) oc 7;. Explicitly, one has
o
1 = Mo Ajol = iA;) [ rn o, @220
- 0
(Zb)j Tp n
" = [Aro, Amolt f dn f dn
i 0 0
Xzeijknj,l(tl)nk,n1(t2)s (22b)
ik
5y 7 n
n% = Z[Aj,OvAk,O]f dl1/ dn
i j<k 0 0
x[n; j(tOn; x(t2) — n; j(n; ()], (22¢)

In these equations the anticommutator [-,-], and the
completely antisymmetric Levi-Civita tensor ¢;; appear. The
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indices i, j, k, [, and m take one of the values x, y, or z. Most
of the Eqgs. (21b) and (22) are identical to those obtained in
Ref. [30]. Only in n§2“> does the time dependence of the bath
appear additionally. It is encoded in the operators A ; 1, which
are zero for a time-independent bath.

The second-order equations (22) do not show a dependence
on pure bath terms of an order higher than H,, . This means that
the time dependence of the pure bath Hamiltonian is irrelevant
up to second order. This is reasonable because even for a
time-independent bath the actual bath dynamics induced from
H, appears only in second-order conditions. This does not
apply to the vector operator A(t) which is already relevant in
first-order pulses.

In the general case of a completely generic bath, all the
expressions n®, a € {1,2a,2b,2c}, have to vanish in order
to fulfill U. =1+ O(T;). The pulse shape determines the
time evolution of the matrix elements n; ;. Hence, in order
to fulfill all the conditions the operator-independent integrals
in Egs. (21b) and (22) must disappear. The resulting 39 scalar
equations are identical to those obtained in Ref. [30].

This is our first key result. It proves the applicability of the
previously obtained pulses even in the presence of a nontrivial
time dependence of the bath which may stem from special
reference frames or from the interaction picture of fast modes.
For specific cases, such as the pure dephasing model or if
[Hy (1), A ()] = 0 the number of scalar equations to be fulfilled
forU. =1+ O(rg) is reduced significantly. Pulses with less
complexity can be used. This is studied in the sequel.

IV. FREQUENCY MODULATED ANSATZ

To solve Eq. (10) we choose an ansatz for v(¢). In this paper
we focus on a frequency-modulated pulse acting only in the
0,0, plane with a fixed amplitude V := |v] and the current
axis of rotation

Vo cos[D(7)]
(1) = | Vosin[®()] |, (23)
0

where ®(#) is a time-dependent phase. Note the difference
to pulses with a time-dependent amplitude and a fixed axis
discussed, for instance, in Refs. [16,27,30]. We focus here
on frequency modulation in complement to previous work
because there may be experimental setups where frequency
modulation is much easier (or more accurately) implemented
than amplitude modulation. Note that the ansatz (23) assumes
that the control pulse can be switched on instantaneously.
Transients are assumed to be sufficiently steep to be taken
as jumps. The consideration of continuous amplitudes and
frequency modulation is left to future research.

To point out the relation of the ansatz (23) to the experi-
mental realization in the laboratory framework we consider a
spin with a Larmor frequency ; in the NMR language [39]:

H, = —= 0z (24)
Of course, this description is not restricted to nuclear
spins. Any two-level system with an energy splitting can
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be considered. The control field is realized by applying a
field perpendicular to the o, axis rotating with the Larmor
frequency:

Hi¢ = Volo, cos[opt — O(1)] — oy sinfwpt — P(1)]}).  (25)

We include a time-dependent phase ®(¢) to shape the pulse.
Its derivative d,P(¢) is the deviation of the frequency from
the Larmor frequency. In this sense Eq. (25) describes a
frequency-modulated pulse. Next, H, is transformed into the
rotating framework in which H, vanishes. Using the unitary
time evolution induced by H,

Urn() = exp (i%mz), (26)

we obtain H, (1) = UjotanUmt, which reads

Vi cos[D(1)] Oy
Hiq(t) = | Vosin[®(@)] |- | oy | =0@)-0. (27)
0 o,

In order to find a(r) and v (¢) appearing in the parametriza-
tion in Eq. (7) of the pulse one has to solve the differential
equation (10). Because () is a unit vector, it is convenient to
describe it by two angles ¢(¢) and 6(¢):

sin[0(1)] cos[p(#)]
sin[0(1)] sin[p()] | . (28)
cos[6(1)]

a(t) =

Solving Eq. (10) for the time derivatives of ¥ (¢), ¢(¢), and
6(t), we find

0, = 2V sin @ [sin ® sin ¢ + cos ® cos ¢], (29a)
¥ oo ¥
cos = sin(®—g)— sin = cos 6 cos(P —
8t<p:V0[ 5 sin(®—g) 5 ( w)], (29b)
sin & sin
v i ¥
cos = cos 6 cos(P—@)—+ sin £ sin(P—
a,e:vo[ 2 ( .w?p 7 Sind ‘p)]. (29¢)
sin

2

The seeming singularities for vanishing angles on the right-
hand sides of Egs. (29b) and (29c) have no physical reason,
but they only result from the choice of spherical coordinates
and from the chosen parametrization in Eq. (7). Note that the
global axis of rotation @ is not uniquely defined if ¢ is a
multiple of 2.

At the very beginning at ¢ = 0 the current axis of rotation v
and the global one d coincide. The former lies by construction
in the 0,0, plane. Hence we have the initial conditions

. T

lim(r) = . (30a)

limy (1) = 0, (30b)
lime(1) = S(0). (30c)

where the latter two equations represent our deliberate choice.
Inspecting the limit # — O one additionally finds

20;¢|i1=0 = 0, P(t) |10,
0,0 |i1=0 =0.

(31a)
(31b)
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The derivative 9,1 follows trivially from Eq. (29a). In the
next section, we provide solutions for this ansatz and a specific
case of spin-bath coupling.

V. RESULTS

We are interested in the experimentally important case of a
purely dephasing model, i.e., a bath coupled only via o, to the
spin

A(t) = AQt)e,. (32)

Hence the coupling becomes simpler, but the bath dynamics
itself is still kept in full generality. Spin flips do not occur
in this model so that 7} is infinite. But decoherence of the
T, type is entirely kept. This assumption is justified in many
experimental realizations. Moreover, the simplification of the
coupling is advantageous for pulse shaping because it reduces
the number of integral conditions derived from Egs. (21b) and
(22) in second order to be fulfilled from 39 to 3 first-order
conditions and 6 second-order conditions which are given
explicitly in Appendices A and B.

In the following, we present continuous pulses which fulfill
the first-order conditions (first-order pulses) and pulses which
fulfill all first- and second-order conditions (second-order
pulses) for pure dephasing as in Eq. (32). Thereby, we provide
optimized pulses that decouple the spin from the bath during
the duration of the pulse up to 0(1’3).

In order to consider a continuous frequency modulation we
use the Fourier series ansatz

@(t):ZbZn_l sin2mnt /tp)+by,[cosrnt /7,)—1]  (33)

for ®(¢). We consider w and 7 /2 pulses because of their
frequent use in QIP and NMR. Therefore, the pulse has to
fulfill

Y(p) =m or m/2 (34)

for  pulses and v /2 pulses, respectively, according to Eq. (8).
The value 6(tp,) is fixed by the fact that the final axis of rotation

TABLE I. Overview of the pulses satisfying all first-order equa-
tions (21b). FM-1-PI denotes the frequency-modulated 7 pulse. FM-
1-PI2 denotes the frequency-modulated v /2 pulse. The dimensionless
coefficients b, belong to the ansatz in Eq. (33). The amplitudes Vj
are given in units of 1/7,. With all eight digits given the conditions
are fulfilled for the 7 pulse within 1071 and for the /2 pulse within
10~°. With only two digits they are fulfilled within 1073 and 1072,
respectively.

First-order pulses

FM-1-PI FM-1-PI2
Vo 3.751 466 09 Vo 4.928 924 84
by 0.000 114 42 by 0.000 098 74
by —1.093 471 12 by —0.943 31659
by 0.000 124 43 by 0.000 025 30
by —0.594 525 72 by —0.120 876 63
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37‘- | L L L L L L L L L =
x 110
%r i 0.8
) 0.6
2 104
i 0.2
0 o
_=L 4 —0:2
4 \ 1 p
r \ i’ - —0.4
e " SN 7 d 06
-imF R St J —os
- 1 1 1 1 1 1 1 1 1 —1.0

0 01 02 03 04 05 06 07 08 09 1.0
t [units of 7p)

FIG. 1. (Color online) First-order 7 pulse FM-1-PI. We also plot
sin () oc vy (¢) and cos P(¢) o v,(¢) to illustrate the pulse shape in
spin space. The left scale refers to ®(¢) and the right scale to sin ®(#)
and cos ®(t), respectively. The Fourier coefficients for this pulse are
given in Table I.

has to be perpendicular to o, to rotate the spin by the full angle
¥ (7p). Thus we require

0(r,) = % (35)

For a given ansatz, Eq. (33), the numerical procedure to
find solutions is straightforward. We solve the differential
equations (29) using a fourth-order Runge-Kutta algorithm.
For this solution the conditions (21b), (22), (8), and (35) are
evaluated. We search for roots using the Powell hybrid method
in the GNU scientific library [40].

Of two different pulses the one with the lower amplitude
Vy is preferable in experiment because less power is needed
to realize it. For an experimentally realizable maximum
amplitude this implies that the theoretical pulse with lower am-
plitude can be made shorter, which is definitely advantageous.

5
1T —T T T T T T T T T T T 7312
T 1.0
3 0.8
e ]
0.6
L3
2 ]
0.4
= ]
4 0.2
0 : 0
x $(t) N o 4 —0.2
T [ sin[®(t)] ---- R - l
F cos[®(t)] ----- 4 04
_r P IR U NP B IR SRR RN SRR
2 0 0.1 0.2 03 04 05 06 0.7 08 09 1.0

t [units of ]

FIG. 2. (Color online) First-order /2 pulse FM-1-PI2. We also
plot sin ®(¢) o< v, (¢) and cos O(¢) o< v, (¢) to illustrate the pulse shape
in spin space. The left scale refers to ®(¢) and the right scale to sin ®(7)
and cos ®(t), respectively. The Fourier coefficients for this pulse are
given in Table I.
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TABLEII. Overview of the pulses satisfying all first- and second-
order equations, Egs. (21b) and (III). FM-2-PI and FM-2-PI2 denote
the frequency-modulated 7 pulse and /2 pulse, respectively. The
dimensionless coefficients b, belong to the ansatz in Eq. (33). The
amplitudes Vj are given in units of 1/7,. With all eight digits given
the conditions are fulfilled for the 7 pulse within 10~'° and for the
/2 pulse within 107!, With only two digits they are fulfilled within
1072 and 1072, respectively.

Second- forder pulses

FM-2-PI FM-2-PI2
Vo 12.834 329 79 Vo 12.256 193 90
by 0.114 751 39 b, 1.730 718 40
by 0.172 485 87 b, 0.735 299 59
b3 0.482 625 21 b3 0.232 42523
by —1.144 948 51 by —0.248 293 10
bs —0.208 790 91 bs —0.071 022 04
b 0.253 780 13 bs —0.131 923 80
b; 0.203 068 35 b, 1.079 482 26
bg —0.167 480 22 by 0.122 200 06
by —0.320 522 54 by 0.046 089 86
bio 0.325 862 03 bio —0.153 656 17

Hence we search for pulses with lower amplitude among
the second-order pulses. This is done by using an additional
coefficient b,, in the ansatz (33) and minimizing the amplitude
Vo of the resulting solutions by varying this additional
coefficient.

A. First-order pulses

For first-order pulses and the pure dephasing model, the set
of conditions (21b) comprises only three equations given in
Appendix A. Adding conditions (34) and (35) five parameters
are necessary to construct first-order pulses. One parameter
is the amplitude V, and the others are the coefficients b, in
ansatz (33). The characteristics of the pulses are reported in

5
AT T T T T T T T T T T T T T T 912
T 1.0
S { 0.8
~ 0.6
2 0.4
% 0.2
0 0
_= 1 ! —0.2
i 1 ! ]
= | I —0.4
2 [ | ! —0.6
1 E
=i ®(1) [ J os
sin[®(t)] ---- \a i
-T [ cos[®(t)] ---- o ] —1.0
_5n | P PR R | 1 1 1 1 1 =4 —1.2
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FIG. 3. (Color online) Second-order 7 pulse FM-2-PI. We also
plot sin ®(¢) oc vy (¢) and cos P(¢) o< v,(¢) to illustrate the pulse shape
in spin space. The left scale refers to ®(¢) and the right scale to sin ®(r)
and cos ®(t), respectively. The Fourier coefficients for this pulse are
given in Table II.
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FIG. 4. (Color online) Second-order m/2-pulse FM-2-PI2. We
also plot sin ®(¢) o v, (¢) and cos O(¢) o v,(¢) to illustrate the pulse
shape in spin space. The left scale refers to ®(¢) and the right scale to
sin @(¢) and cos P(¢), respectively. The Fourier coefficients for this
pulse are given in Table II.

Table I. The pulses are plotted in Figs. 1 and 2. Note that
the composite and continuous amplitude-modulated pulses
found in Ref. [30] have comparable amplitudes for first-order
pulses.

B. Second-order pulses

Second-order pulses additionally have to fulfill conditions
(22). These equations again simplify for a purely dephasing
bath leading to six additional integral conditions besides the
first-order terms see Appendix B. Note that more equations are
to be fulfilled than for amplitude modulation [30] because the
frequency-modulated pulses involve all three spin directions.
The solutions for m and /2 pulses are given in Table II
and they are displayed in Figs. 3 and 4. Numerically, the
double integrals in Eqs. B2 are particularly demanding. Full
quantum mechanical studies of higher-order pulses will be
hampered by even higher dimensional integrals occurring in
the Magnus expansion [38]. An alternative route, which may
be numerically more efficient, consists of the direct solution
of the Schrodinger equation [24]. The mathematical existence
of higher-order pulses is known [31].

Since we are interested in pulses with low amplitudes, we
aim at minimizing the amplitude. To this end, we add another
Fourier coefficient to the ansatz (33) and vary this additional
parameter. In this way, we obtained the pulses FM-2-MIN-PI
and FM-2-MIN-PI2 given in Table III and plotted in Figs. 5
and 6. Empirically it turned out to be more efficient to consider
b4 instead of by; as an additional coefficient. It is expected
that even lower amplitudes can be achieved by using further
coefficients. But our calculations with different coefficients,
not shown here, indicate that this route would improve the
amplitude only by 1%—2% at the expense of a more complex
pulse shape.

By using only one free coefficient (bj4) we found /2
pulses with amplitudes lower than 9.0/7, to be compared
with the amplitude-modulated pulses [30] with amplitude
11.5/7,. For w pulses we need Vo = 10.7/7, in comparison
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TABLEIIIL. Overview of the pulses satisfying all first- and second-
order equations, Egs. (21b) and (22), with minimized amplitude.
FM-2-PI and FM-2-PI2 denote the frequency-modulated 7 pulse and
7 /2 pulse with minimized amplitude, respectively. The dimensionless
coefficients b, belong to the ansatz in Eq. (33). The amplitudes Vj
are given in units of 1/7,. With all eight digits given the conditions
are fulfilled for the 7 pulse within 10~'° and for the 77 /2 pulse within
10~°. With only two digits they are fulfilled within 10~ and 107",
respectively.

Minimized second-order pulses

FM-2-MIN-PI FM-2-MIN-PI2
Vo 10.707 114 54 Vo 8.435414 12
b, 0.000 020 87 b —1.820415 07
b, 1.387 689 38 b, —0.352491 97
b3 —0.000 199 22 b 0.030 548 74
by —0.706 689 98 by 0.520 93576
bs —0.000 015 88 bs —0.555 044 40
b 0.137 730 85 b —0.388 155 68
b; 0.000 087 70 by 0.451 673 61
bg 0.688 943 31 by —0.194 450 80
by —0.000 114 08 by —0.161 948 06
bio —0.697 440 86 bio —0.282 233 30
by 0.465 01991 by 0.045 858 97

to 11.0/7, for amplitude modulation. The amplitudes of
the amplitude-modulated pulses refer to piecewise constant
pulses; for continuous pulses they are even higher. Of course,
the reduction of the amplitudes for frequency-modulated
pulses is not spectacular. But it is remarkable that pulses
with relatively low amplitudes can be found despite the larger
number of conditions to be fulfilled: the frequency-modulated
pulse fulfills 9+ 2 = 11 equations including the conditions
for the angles, and the amplitude-modulated pulse fulfills
5 + 1 = 6 conditions including the condition for the rotation
angle.
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FIG. 5. (Color online) Minimized second-order 7 pulse FM-2-
MIN-PI; sin ®(¢) o< vy(¢) and cos ®(r) o< v,(¢) show the pulse shape
in spin space. The left scale refers to ®(¢) and the right scale to
sin ®(¢) and cos P(z), respectively. The Fourier coefficients for this
pulse are given in Table III.
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FIG. 6. (Color online) Minimized second-order 7 /2 pulse FM-
2-MIN-PI2. We also plot sin () oc vy(¢) and cos ®(¢) o v(¢) to
illustrate the pulse shape in spin space. The left scale refers to ®(r)
and the right scale to sin ®(¢) and cos ®(t), respectively. The Fourier
coefficients for this pulse are given in Table III.

VI. CONCLUSIONS

In this paper we extended the existing perturbative approach
to decouple a spin from a quantum mechanical bath by means
of short control pulses in two ways.

First, we allowed for a time-dependent bath, which means
both the bath Hamilton operator and the coupling operators
may have an explicit, analytical time dependence. Yet, we
found that this time dependence does not alter the requirements
for the pulse shape which were derived previously for time-
independent baths [30]. Hence, the pulses found previously
are also applicable for time-dependent environments as they
arise, for instance, in time-dependent reference frames or
in the interaction picture of otherwise time-independent
Hamiltonians. This is our first key result.

Second, we studied frequency-modulated pulses in first
order and in second order in the pulse duration 7, for quantum
mechanical baths. Previously, only amplitude modulation
was considered explicitly for quantum mechanical baths
[16,27,30]. Frequency modulation was so far studied for static
baths only [23]. We provide explicit solutions for continuous
frequency-modulated pulses with amplitudes which have been
minimized empirically. Such pulses are expected to be useful
in experiments where no amplitude modulation can be realized
or where the achievable accuracy for frequency modulation is
superior to the accuracy of amplitude modulation. For instance,
they can be used to implement realistic optimized dynamic
decoupling [33,34] where the dynamic decoupling sequence
is adapted to pulses of finite length. The frequency-modulated
pulses constitute our second key result.

We emphasize that modulated pulses correspond to quan-
tum gates which are robust against decoherence in the
framework of quantum-information processing, e.g., the 7 /2
pulse about o, preceded by a 7 pulse about o, realizes the
important Hadamard gate up to a global factor i.!

I'This fact was stated in Refs. [28] and [29] in a too shortened way,
leaving out the 7 pulse.
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Further work should concentrate on higher-order terms
not studied here. Such terms comprise higher-dimensional
integrals so that the numerical effort increases considerably.
Another promising route is to extend the model from pure
dephasing to general decoherence. This would allow for
systems with finite 77 as well, at the expense of more complex
pulses.

But at the present stage, it is also called for to verify the
performance of the proposed pulses experimentally in order to
assess how promising further extensions would be.

ACKNOWLEDGMENTS

We thank Christopher Stihl, Nils Drescher, Frederik Keim,
and Leonid Pryadko for useful discussions and comments. The
study of frequency modulation was triggered by a discussion
with Michael Biercuk and Hermann Uys. We acknowledge
financial support of the DFG under Project UH 90/5-1.

APPENDIX A: FIRST-ORDER CONDITIONS

For the first-order conditions we inspect Eq. (21b) to find the
corresponding scalar equations. In a purely dephasing bath the
sum over j collapsesto j = z,resulting in the scalar equations

= /0 " ay (1) sin[y (1)) —[1— cos(¥)a, (Da(1)dr, (Ala)
nio= /0 a0 sinfy (1)1+1— cos(¥)ay (Da(1)dr, (Alb)

n13 =/pcosw(t)]+[1 — cos(y)]a,(t)*dt. (Alc)
0

The a; are the components of the global axis of rotation
parametrized in Eq. (28).

cos ¥ + (1 — cos ¥r)a?

Dy(—y) = | a;sinyy + (1 — cosyr)a,a,
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APPENDIX B: SECOND-ORDER CONDITIONS

For the second-order conditions, we additionally have to
consider Egs. (22) to find the corresponding scalar equations.
Again certain sums collapse due to the purely dephasing bath
model and we eventually obtain

21 =/0pt{ay(t)Sin[I/f(t)]—[l—COS(I/f)]ax(t)az(t)}dt, (Bla)
N2 =/0 pt{ax(l)Sin[lﬁ(l)]Jr[l—COS(%ﬁ)]ay(t)az(t)}dt, (B1b)

N3 = / pt{COS[lﬁ(t)] +[1 = cos(¥)la,(t)*}dt, (Blc)
0
and

- / an / disl (0 (t)—n (1) (1)], (B2a)
0 0

as = / " an / sl (1o (12) = (i)n.o(12)], (B2b)
0 0

- / "an / Aol ()=, (1)), (B2e)
0 0

The matrix elements 7;;(t) occurring here are those of the
rotation matrix D;(—) given explicitly in Eq. (C1). The
components ; are parametrized in Eq. (28).

APPENDIX C: ROTATION MATRIX

To derive the matrix D;(—1) we refer the reader to
Ref. [30]. It is calculated by comparison of the coefficients
in Eq. (17a). We obtain the matrix (C1) below, where the time
dependencies of ¥ (¢) and a(t) are omitted for clarity:

a; sinyr + (1 — cosy)aca, —aysiny + (1 — cos¥)aya;,
cos ¥ + (1 — cos y)a;
aysiny + (1 — cosy¥)aca; —a, siny + (1 — cos ¥)a,a,

ay sinyr + (1 —cosyaya, | . (C1)
cos Y + (1 — cos 1//)613
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