000201769 001__ 201769
000201769 005__ 20240610120453.0
000201769 0247_ $$2doi$$a10.1038/ncomms5302
000201769 0247_ $$2WOS$$aWOS:000340613800010
000201769 0247_ $$2Handle$$a2128/24462
000201769 037__ $$aFZJ-2015-04063
000201769 082__ $$a500
000201769 1001_ $$0P:(DE-HGF)0$$aBen-Moshe, Assaf$$b0
000201769 245__ $$aEnantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules
000201769 260__ $$aLondon$$bNature Publishing Group$$c2014
000201769 3367_ $$2DRIVER$$aarticle
000201769 3367_ $$2DataCite$$aOutput Types/Journal article
000201769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435560047_10713
000201769 3367_ $$2BibTeX$$aARTICLE
000201769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201769 3367_ $$00$$2EndNote$$aJournal Article
000201769 520__ $$aA large number of inorganic materials form crystals with chiral symmetry groups. Enantioselectively synthesizing nanostructures of such materials should lead to interesting optical activity effects. Here we report the synthesis of colloidal tellurium and selenium nanostructures using thiolated chiral biomolecules. The synthesis conditions are tuned to obtain tellurium nanostructures with chiral shapes and large optical activity. These nanostructures exhibit visible optical and chiroptical responses that shift with size and are successfully simulated by an electromagnetic model. The model shows that they behave as chiral optical resonators. The chiral tellurium nanostructures are transformed into chiral gold and silver telluride nanostructures with very large chiroptical activity, demonstrating a simple colloidal chemistry path to chiral plasmonic and semiconductor metamaterials. These materials are natural candidates for studies related to interactions of chiral (bio)molecules with chiral inorganic surfaces, with relevance to asymmetric catalysis, chiral crystallization and the evolution of homochirality in biomolecules.
000201769 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000201769 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201769 7001_ $$0P:(DE-HGF)0$$aWolf, Sharon Grayer$$b1
000201769 7001_ $$0P:(DE-HGF)0$$aSadan, Maya Bar$$b2
000201769 7001_ $$0P:(DE-Juel1)130723$$aHouben, Lothar$$b3$$ufzj
000201769 7001_ $$0P:(DE-HGF)0$$aFan, Zhiyuan$$b4
000201769 7001_ $$0P:(DE-HGF)0$$aGovorov, Alexander O.$$b5
000201769 7001_ $$0P:(DE-HGF)0$$aMarkovich, Gil$$b6$$eCorresponding Author
000201769 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms5302$$gVol. 5$$p4302$$tNature Communications$$v5$$x2041-1723$$y2014
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.pdf$$yOpenAccess
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.gif?subformat=icon$$xicon$$yOpenAccess
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201769 8564_ $$uhttps://juser.fz-juelich.de/record/201769/files/ncomms5302.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201769 909CO $$ooai:juser.fz-juelich.de:201769$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000201769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130723$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201769 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000201769 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201769 9141_ $$y2015
000201769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201769 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201769 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000201769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201769 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000201769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201769 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201769 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201769 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201769 920__ $$lyes
000201769 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201769 9801_ $$aFullTexts
000201769 980__ $$ajournal
000201769 980__ $$aVDB
000201769 980__ $$aUNRESTRICTED
000201769 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201769 981__ $$aI:(DE-Juel1)ER-C-1-20170209