001     201769
005     20240610120453.0
024 7 _ |a 10.1038/ncomms5302
|2 doi
024 7 _ |a WOS:000340613800010
|2 WOS
024 7 _ |a 2128/24462
|2 Handle
037 _ _ |a FZJ-2015-04063
082 _ _ |a 500
100 1 _ |a Ben-Moshe, Assaf
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules
260 _ _ |a London
|c 2014
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435560047_10713
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A large number of inorganic materials form crystals with chiral symmetry groups. Enantioselectively synthesizing nanostructures of such materials should lead to interesting optical activity effects. Here we report the synthesis of colloidal tellurium and selenium nanostructures using thiolated chiral biomolecules. The synthesis conditions are tuned to obtain tellurium nanostructures with chiral shapes and large optical activity. These nanostructures exhibit visible optical and chiroptical responses that shift with size and are successfully simulated by an electromagnetic model. The model shows that they behave as chiral optical resonators. The chiral tellurium nanostructures are transformed into chiral gold and silver telluride nanostructures with very large chiroptical activity, demonstrating a simple colloidal chemistry path to chiral plasmonic and semiconductor metamaterials. These materials are natural candidates for studies related to interactions of chiral (bio)molecules with chiral inorganic surfaces, with relevance to asymmetric catalysis, chiral crystallization and the evolution of homochirality in biomolecules.
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wolf, Sharon Grayer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sadan, Maya Bar
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Houben, Lothar
|0 P:(DE-Juel1)130723
|b 3
|u fzj
700 1 _ |a Fan, Zhiyuan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Govorov, Alexander O.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Markovich, Gil
|0 P:(DE-HGF)0
|b 6
|e Corresponding Author
773 _ _ |a 10.1038/ncomms5302
|g Vol. 5
|0 PERI:(DE-600)2553671-0
|p 4302
|t Nature Communications
|v 5
|y 2014
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201769/files/ncomms5302.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201769
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130723
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21