000201771 001__ 201771
000201771 005__ 20240610120453.0
000201771 0247_ $$2doi$$a10.1007/s10853-014-8371-4
000201771 0247_ $$2ISSN$$a0022-2461
000201771 0247_ $$2ISSN$$a1573-4803
000201771 0247_ $$2WOS$$aWOS:000338348000026
000201771 037__ $$aFZJ-2015-04065
000201771 082__ $$a670
000201771 1001_ $$0P:(DE-HGF)0$$aEhlers, F. J. H.$$b0$$eCorresponding Author
000201771 245__ $$aPhase stabilization principle and precipitate-host lattice influences for Al–Mg–Si–Cu alloy precipitates
000201771 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000201771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435560277_10712
000201771 3367_ $$2DataCite$$aOutput Types/Journal article
000201771 3367_ $$00$$2EndNote$$aJournal Article
000201771 3367_ $$2BibTeX$$aARTICLE
000201771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201771 3367_ $$2DRIVER$$aarticle
000201771 520__ $$aIn this work, we seek to elucidate a common stabilization principle for the metastable and equilibrium phases of the Al–Mg–Si–Cu alloy system, through combined experimental and theoretical studies. We examine the structurally known well-ordered Al–Mg–Si–Cu alloy metastable precipitates along with experimentally observed disordered phases, using high angle annular dark field scanning transmission electron microscopy. A small set of local geometries is found to fully explain all structures. Density functional theory based calculations have been carried out on a larger set of structures, all fully constructed by the same local geometries. The results reveal that experimentally reported and hypothetical Cu-free phases from the set are practically indistinguishable with regard to formation enthalpy and composition. This strongly supports a connection of the geometries with a bulk phase stabilization principle. We relate our findings to the Si network substructure commonly observed in all Mg–Al–Si(–Cu) metastable precipitates, showing how this structure can be regarded as a direct consequence of the local geometries. Further, our proposed phase stabilization principle clearly rests on the importance of metal-Si interactions. Close links to the Al–Mg–Si precipitation sequence are proposed.
000201771 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000201771 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201771 7001_ $$0P:(DE-HGF)0$$aWenner, S.$$b1
000201771 7001_ $$0P:(DE-HGF)0$$aAndersen, S. J.$$b2
000201771 7001_ $$0P:(DE-HGF)0$$aMarioara, C. D.$$b3
000201771 7001_ $$0P:(DE-HGF)0$$aLefebvre, W.$$b4
000201771 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, C. B.$$b5$$ufzj
000201771 7001_ $$0P:(DE-HGF)0$$aHolmestad, R.$$b6$$eCorresponding Author
000201771 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-014-8371-4$$gVol. 49, no. 18, p. 6413 - 6426$$n18$$p6413 - 6426$$tJournal of materials science$$v49$$x1573-4803$$y2014
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.pdf$$yRestricted
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.gif?subformat=icon$$xicon$$yRestricted
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201771 8564_ $$uhttps://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201771 909CO $$ooai:juser.fz-juelich.de:201771$$pVDB
000201771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144965$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201771 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000201771 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201771 9141_ $$y2015
000201771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201771 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201771 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201771 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201771 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201771 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201771 920__ $$lyes
000201771 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201771 980__ $$ajournal
000201771 980__ $$aVDB
000201771 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201771 980__ $$aUNRESTRICTED
000201771 981__ $$aI:(DE-Juel1)ER-C-1-20170209