001     201771
005     20240610120453.0
024 7 _ |a 10.1007/s10853-014-8371-4
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a WOS:000338348000026
|2 WOS
037 _ _ |a FZJ-2015-04065
082 _ _ |a 670
100 1 _ |a Ehlers, F. J. H.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Phase stabilization principle and precipitate-host lattice influences for Al–Mg–Si–Cu alloy precipitates
260 _ _ |a Dordrecht [u.a.]
|c 2014
|b Springer Science + Business Media B.V
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435560277_10712
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this work, we seek to elucidate a common stabilization principle for the metastable and equilibrium phases of the Al–Mg–Si–Cu alloy system, through combined experimental and theoretical studies. We examine the structurally known well-ordered Al–Mg–Si–Cu alloy metastable precipitates along with experimentally observed disordered phases, using high angle annular dark field scanning transmission electron microscopy. A small set of local geometries is found to fully explain all structures. Density functional theory based calculations have been carried out on a larger set of structures, all fully constructed by the same local geometries. The results reveal that experimentally reported and hypothetical Cu-free phases from the set are practically indistinguishable with regard to formation enthalpy and composition. This strongly supports a connection of the geometries with a bulk phase stabilization principle. We relate our findings to the Si network substructure commonly observed in all Mg–Al–Si(–Cu) metastable precipitates, showing how this structure can be regarded as a direct consequence of the local geometries. Further, our proposed phase stabilization principle clearly rests on the importance of metal-Si interactions. Close links to the Al–Mg–Si precipitation sequence are proposed.
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wenner, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Andersen, S. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Marioara, C. D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lefebvre, W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Boothroyd, C. B.
|0 P:(DE-Juel1)144965
|b 5
|u fzj
700 1 _ |a Holmestad, R.
|0 P:(DE-HGF)0
|b 6
|e Corresponding Author
773 _ _ |a 10.1007/s10853-014-8371-4
|g Vol. 49, no. 18, p. 6413 - 6426
|0 PERI:(DE-600)2015305-3
|n 18
|p 6413 - 6426
|t Journal of materials science
|v 49
|y 2014
|x 1573-4803
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201771/files/art_10.1007_s10853-014-8371-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201771
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144965
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21