000201775 001__ 201775
000201775 005__ 20240712101054.0
000201775 0247_ $$2doi$$a10.5194/acp-10-5759-2010
000201775 0247_ $$2ISSN$$a1680-7316
000201775 0247_ $$2ISSN$$a1680-7324
000201775 0247_ $$2Handle$$a2128/8896
000201775 0247_ $$2WOS$$aWOS:000279391100030
000201775 0247_ $$2altmetric$$aaltmetric:21826590
000201775 037__ $$aFZJ-2015-04069
000201775 082__ $$a550
000201775 1001_ $$0P:(DE-HGF)0$$aJonson, J. E.$$b0
000201775 245__ $$aA multi-model analysis of vertical ozone profiles
000201775 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000201775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435561331_10721
000201775 3367_ $$2DataCite$$aOutput Types/Journal article
000201775 3367_ $$00$$2EndNote$$aJournal Article
000201775 3367_ $$2BibTeX$$aARTICLE
000201775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201775 3367_ $$2DRIVER$$aarticle
000201775 520__ $$aA multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region. Intercontinental transport of ozone is finally determined based on differences in model ensemble calculations. With emissions perturbed by 20% per region, calculated intercontinental contributions to ozone in the free troposphere range from less than 1 ppb to 3 ppb, with small contributions in winter. The results are corroborated by the retroplume calculations. At several locations the seasonal contributions to ozone in the free troposphere from intercontinental transport differ from what was shown earlier at the surface using the same dataset. The large spread in model results points to a need of further evaluation of the chemical and physical processes in order to improve the credibility of global model results.
000201775 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000201775 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201775 7001_ $$0P:(DE-HGF)0$$aStohl, A.$$b1
000201775 7001_ $$0P:(DE-HGF)0$$aFiore, A. M.$$b2
000201775 7001_ $$0P:(DE-HGF)0$$aHess, P.$$b3
000201775 7001_ $$0P:(DE-HGF)0$$aSzopa, S.$$b4
000201775 7001_ $$0P:(DE-HGF)0$$aWild, O.$$b5
000201775 7001_ $$0P:(DE-HGF)0$$aZeng, G.$$b6
000201775 7001_ $$0P:(DE-HGF)0$$aDentener, F. J.$$b7
000201775 7001_ $$0P:(DE-HGF)0$$aLupu, A.$$b8
000201775 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b9$$ufzj
000201775 7001_ $$0P:(DE-HGF)0$$aDuncan, B. N.$$b10
000201775 7001_ $$0P:(DE-HGF)0$$aSudo, K.$$b11
000201775 7001_ $$0P:(DE-HGF)0$$aWind, P.$$b12
000201775 7001_ $$0P:(DE-HGF)0$$aSchulz, M.$$b13
000201775 7001_ $$0P:(DE-HGF)0$$aMarmer, E.$$b14
000201775 7001_ $$0P:(DE-HGF)0$$aCuvelier, C.$$b15
000201775 7001_ $$0P:(DE-HGF)0$$aKeating, T.$$b16
000201775 7001_ $$0P:(DE-HGF)0$$aZuber, A.$$b17
000201775 7001_ $$0P:(DE-HGF)0$$aValdebenito, A.$$b18
000201775 7001_ $$0P:(DE-HGF)0$$aDorokhov, V.$$b19
000201775 7001_ $$0P:(DE-HGF)0$$aDe Backer, H.$$b20
000201775 7001_ $$0P:(DE-HGF)0$$aDavies, J.$$b21
000201775 7001_ $$0P:(DE-HGF)0$$aChen, G. H.$$b22
000201775 7001_ $$0P:(DE-HGF)0$$aJohnson, B.$$b23
000201775 7001_ $$0P:(DE-HGF)0$$aTarasick, D. W.$$b24
000201775 7001_ $$0P:(DE-HGF)0$$aStübi, R.$$b25
000201775 7001_ $$0P:(DE-HGF)0$$aNewchurch, M. J.$$b26
000201775 7001_ $$0P:(DE-HGF)0$$avon der Gathen, P.$$b27
000201775 7001_ $$0P:(DE-HGF)0$$aSteinbrecht, W.$$b28
000201775 7001_ $$0P:(DE-HGF)0$$aClaude, H.$$b29
000201775 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-5759-2010$$gVol. 10, no. 12, p. 5759 - 5783$$n12$$p5759 - 5783$$tAtmospheric chemistry and physics$$v10$$x1680-7324$$y2010
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.pdf$$yOpenAccess
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.gif?subformat=icon$$xicon$$yOpenAccess
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201775 8564_ $$uhttps://juser.fz-juelich.de/record/201775/files/acp-10-5759-2010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201775 909CO $$ooai:juser.fz-juelich.de:201775$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000201775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000201775 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000201775 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000201775 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000201775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201775 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201775 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201775 920__ $$lyes
000201775 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000201775 9801_ $$aFullTexts
000201775 980__ $$ajournal
000201775 980__ $$aVDB
000201775 980__ $$aFullTexts
000201775 980__ $$aUNRESTRICTED
000201775 980__ $$aI:(DE-Juel1)IEK-8-20101013
000201775 981__ $$aI:(DE-Juel1)ICE-3-20101013