000201779 001__ 201779
000201779 005__ 20210129215914.0
000201779 0247_ $$2doi$$a10.1134/S0021364013160145
000201779 0247_ $$2ISSN$$a0021-3640
000201779 0247_ $$2ISSN$$a1090-6487
000201779 0247_ $$2WOS$$aWOS:000325631800005
000201779 037__ $$aFZJ-2015-04073
000201779 082__ $$a530
000201779 1001_ $$0P:(DE-Juel1)131019$$aVolokitin, Alexander$$b0$$eCorresponding Author
000201779 245__ $$aEffect of the electric current on the Casimir force between graphene sheets
000201779 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2013
000201779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435561723_10722
000201779 3367_ $$2DataCite$$aOutput Types/Journal article
000201779 3367_ $$00$$2EndNote$$aJournal Article
000201779 3367_ $$2BibTeX$$aARTICLE
000201779 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201779 3367_ $$2DRIVER$$aarticle
000201779 520__ $$aThe dependence of the thermal component of the Casimir force and Casimir friction between graphene sheets on the drift velocity of charge carriers in one of the sheets has been analyzed. It has been shown that the drift motion results in the measurable change in the thermal Casimir force owing to the Doppler effect. The thermal Casimir force, as well as Casimir friction, increases strongly in the case of resonant photon tunneling, when the energy of an emitted photon coincides with the excitation energy of an electron-hole pair. In the case of resonant photon tunneling, the dominant contribution to the Casimir friction even at temperatures above room temperature comes from quantum friction caused by quantum fluctuations. Quantum friction can be detected in an experiment on the friction drag between graphene sheets in a high electric field.
000201779 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201779 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201779 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b1
000201779 773__ $$0PERI:(DE-600)1472906-4$$a10.1134/S0021364013160145$$gVol. 98, no. 3, p. 143 - 149$$n3$$p143 - 149$$tJETP letters$$v98$$x1090-6487$$y2013
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.pdf$$yRestricted
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.gif?subformat=icon$$xicon$$yRestricted
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201779 8564_ $$uhttps://juser.fz-juelich.de/record/201779/files/art_10.1134_S0021364013160145.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201779 909CO $$ooai:juser.fz-juelich.de:201779$$pVDB
000201779 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201779 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201779 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201779 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201779 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201779 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201779 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201779 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201779 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201779 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201779 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201779 980__ $$ajournal
000201779 980__ $$aVDB
000201779 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201779 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201779 980__ $$aUNRESTRICTED
000201779 981__ $$aI:(DE-Juel1)PGI-1-20110106