000201784 001__ 201784
000201784 005__ 20230426083125.0
000201784 0247_ $$2doi$$a10.1103/PhysRevB.87.205127
000201784 0247_ $$2ISSN$$a0163-1829
000201784 0247_ $$2ISSN$$a0556-2805
000201784 0247_ $$2ISSN$$a1095-3795
000201784 0247_ $$2ISSN$$a1098-0121
000201784 0247_ $$2ISSN$$a1550-235X
000201784 0247_ $$2Handle$$a2128/8861
000201784 0247_ $$2WOS$$aWOS:000319252600004
000201784 037__ $$aFZJ-2015-04078
000201784 041__ $$aEnglish
000201784 082__ $$a530
000201784 1001_ $$0P:(DE-Juel1)130801$$aLiebsch, Ansgar$$b0$$eCorresponding Author$$ufzj
000201784 245__ $$aCoulomb correlations in the honeycomb lattice: Role of translation symmetry
000201784 260__ $$aCollege Park, Md.$$bAPS$$c2013
000201784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435233320_9505
000201784 3367_ $$2DataCite$$aOutput Types/Journal article
000201784 3367_ $$00$$2EndNote$$aJournal Article
000201784 3367_ $$2BibTeX$$aARTICLE
000201784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201784 3367_ $$2DRIVER$$aarticle
000201784 520__ $$aThe effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this approach and the previously employed cluster dynamical mean-field theory (CDMFT) is that DCA preserves the translation symmetry of the system, while CDMFT violates this symmetry. As the Dirac cones of the honeycomb lattice are the consequence of perfect long-range order, DCA yields semimetallic behavior at small on-site Coulomb interactions U, whereas CDMFT gives rise to a spurious excitation gap even for very small U. This basic difference between the two cluster approaches is found regardless of whether ED or QMC is used as the impurity solver. At larger values of U, the lack of translation symmetry becomes less important, so that the CDMFT reveals a Mott gap, in qualitative agreement with large-scale QMC calculations. In contrast, the semimetallic phase obtained in DCA persists even at U values where CDMFT and large-scale QMC consistently show Mott-insulating behavior.
000201784 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201784 542__ $$2Crossref$$i2013-05-20$$uhttp://link.aps.org/licenses/aps-default-license
000201784 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201784 7001_ $$0P:(DE-HGF)0$$aWu, Wei$$b1
000201784 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.87.205127$$bAmerican Physical Society (APS)$$d2013-05-20$$n20$$p205127$$tPhysical Review B$$v87$$x1098-0121$$y2013
000201784 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.87.205127$$gVol. 87, no. 20, p. 205127$$n20$$p205127$$tPhysical review / B$$v87$$x1098-0121$$y2013
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.pdf$$yOpenAccess
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.gif?subformat=icon$$xicon$$yOpenAccess
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201784 8564_ $$uhttps://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201784 909CO $$ooai:juser.fz-juelich.de:201784$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130801$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201784 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201784 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000201784 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201784 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000201784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201784 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201784 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201784 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201784 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201784 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201784 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201784 980__ $$ajournal
000201784 980__ $$aVDB
000201784 980__ $$aFullTexts
000201784 980__ $$aUNRESTRICTED
000201784 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201784 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201784 9801_ $$aFullTexts
000201784 981__ $$aI:(DE-Juel1)PGI-1-20110106
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08942
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep00992
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.186401
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.245102
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.205102
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.035122
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.035113
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045125
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.165126
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1545
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/24/5/053201
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.045105
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2003-00121-8
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.206402
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.010401
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.096402
000201784 999C5 $$1M. Potthoff$$2Crossref$$oM. Potthoff Theoretical Methods for Strongly Correlated Systems 2012$$tTheoretical Methods for Strongly Correlated Systems$$y2012
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.146404
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.156401
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R7475
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.77.1027
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.205108
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.155112
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/19/8/007
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s002570050384
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.085123
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.121402
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.195433
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.085420
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.075123
000201784 999C5 $$2Crossref$$oNumerical Recipes in Fortran 77 1986$$tNumerical Recipes in Fortran 77$$y1986
000201784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(95)00074-7