| Home > Publications database > Coulomb correlations in the honeycomb lattice: Role of translation symmetry > print |
| 001 | 201784 | ||
| 005 | 20230426083125.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.87.205127 |2 doi |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a 2128/8861 |2 Handle |
| 024 | 7 | _ | |a WOS:000319252600004 |2 WOS |
| 037 | _ | _ | |a FZJ-2015-04078 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Liebsch, Ansgar |0 P:(DE-Juel1)130801 |b 0 |e Corresponding Author |u fzj |
| 245 | _ | _ | |a Coulomb correlations in the honeycomb lattice: Role of translation symmetry |
| 260 | _ | _ | |a College Park, Md. |c 2013 |b APS |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1435233320_9505 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a The effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this approach and the previously employed cluster dynamical mean-field theory (CDMFT) is that DCA preserves the translation symmetry of the system, while CDMFT violates this symmetry. As the Dirac cones of the honeycomb lattice are the consequence of perfect long-range order, DCA yields semimetallic behavior at small on-site Coulomb interactions U, whereas CDMFT gives rise to a spurious excitation gap even for very small U. This basic difference between the two cluster approaches is found regardless of whether ED or QMC is used as the impurity solver. At larger values of U, the lack of translation symmetry becomes less important, so that the CDMFT reveals a Mott gap, in qualitative agreement with large-scale QMC calculations. In contrast, the semimetallic phase obtained in DCA persists even at U values where CDMFT and large-scale QMC consistently show Mott-insulating behavior. |
| 536 | _ | _ | |a 422 - Spin-based and quantum information (POF2-422) |0 G:(DE-HGF)POF2-422 |c POF2-422 |f POF II |x 0 |
| 542 | _ | _ | |i 2013-05-20 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |a Wu, Wei |0 P:(DE-HGF)0 |b 1 |
| 773 | 1 | 8 | |a 10.1103/physrevb.87.205127 |b American Physical Society (APS) |d 2013-05-20 |n 20 |p 205127 |3 journal-article |2 Crossref |t Physical Review B |v 87 |y 2013 |x 1098-0121 |
| 773 | _ | _ | |a 10.1103/PhysRevB.87.205127 |g Vol. 87, no. 20, p. 205127 |0 PERI:(DE-600)2844160-6 |n 20 |p 205127 |t Physical review / B |v 87 |y 2013 |x 1098-0121 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.jpg?subformat=icon-640 |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/201784/files/PhysRevB.87.205127.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:201784 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130801 |
| 913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-422 |2 G:(DE-HGF)POF2-400 |v Spin-based and quantum information |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a FullTexts |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | 1 | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 999 | C | 5 | |a 10.1038/nature08942 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/srep00992 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.87.186401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.82.245102 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.85.205102 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.72.035122 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.83.035113 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.75.045125 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.80.165126 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.72.1545 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/0953-8984/24/5/053201 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.86.045105 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1140/epjb/e2003-00121-8 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.91.206402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.107.010401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.110.096402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |1 M. Potthoff |y 2012 |2 Crossref |t Theoretical Methods for Strongly Correlated Systems |o M. Potthoff Theoretical Methods for Strongly Correlated Systems 2012 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.100.146404 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.100.156401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.58.R7475 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/RevModPhys.77.1027 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.69.205108 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.65.155112 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1209/0295-5075/19/8/007 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1007/s002570050384 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.72.085123 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.86.121402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.85.195433 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.85.085420 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.84.075123 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |y 1986 |2 Crossref |t Numerical Recipes in Fortran 77 |o Numerical Recipes in Fortran 77 1986 |
| 999 | C | 5 | |a 10.1016/0370-1573(95)00074-7 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|