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The effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within

the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time

quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this

approach and the previously employed cluster dynamical mean-field theory (CDMFT) is that DCA preserves the

translation symmetry of the system, while CDMFT violates this symmetry. As the Dirac cones of the honeycomb

lattice are the consequence of perfect long-range order, DCA yields semimetallic behavior at small on-site

Coulomb interactions U , whereas CDMFT gives rise to a spurious excitation gap even for very small U . This

basic difference between the two cluster approaches is found regardless of whether ED or QMC is used as

the impurity solver. At larger values of U , the lack of translation symmetry becomes less important, so that

the CDMFT reveals a Mott gap, in qualitative agreement with large-scale QMC calculations. In contrast, the

semimetallic phase obtained in DCA persists even at U values where CDMFT and large-scale QMC consistently

show Mott-insulating behavior.

DOI: 10.1103/PhysRevB.87.205127 PACS number(s): 71.10.−w, 73.22.−f

I. INTRODUCTION

The possible existence of a spin-liquid phase on the hon-

eycomb lattice has recently attracted considerable attention.

Meng et al.1 investigated the Hubbard model for this system

at half filling, using large-scale quantum Monte Carlo (QMC)

calculations for clusters containing up to 648 sites. Careful

finite-size extrapolations indicated semimetallic behavior for

on-site Coulomb interactions in the range U � 3.5t (t is the

nearest-neighbor hopping) and an antiferromagnetic insulator

for U � 4.3t . The intermediate range 3.5t � U � 4.3t then

corresponds to a Mott phase without long-range order, the

hallmark of a spin liquid. These findings were, however,

disputed by Sorella et al.2 who performed similar QMC

calculations for even larger clusters including up to 2592 sites.

The new results showed a considerably reduced spin-liquid

phase, confined at most to the narrow window 3.8t � U �

3.9t .

The effect of nonlocal Coulomb correlations on the hon-

eycomb lattice was also studied within the cluster extension

of dynamical mean-field theory3 (CDMFT). Wu et al.4 used

continuous-time quantum Monte Carlo5 (CTQMC), whereas

Liebsch6 employed a multiorbital-multisite extension7,8 of

finite-temperature exact diagonalization9 (ED) as impurity

solver. Despite the fact that in the ED CDMFT calculations

it was possible to include only a relatively small bath (six

bath levels per six-site ring unit cell), the cluster self-energy

components were found to be in nearly quantitative agreement

with the CTQMC CDMFT results. (For a detailed comparison

see Fig. 25 of Ref. 10.) In particular, for U ≈ 5t both schemes

revealed a Mott phase, with an excitation gap � ≈ 0.6t , in

close agreement with the one found by Meng et al.1 With

decreasing U , the CTQMC results at temperatures T � 0.05t

indicated the closing of the Mott gap near U = 3.8t ,4 while the

ED results at lower temperature T = 0.005t revealed a weak

insulating contribution to the self-energy at the Dirac points

at arbitrarily low U .6 For U � 3t the small gap associated

with this self-energy was, however, difficult to resolve in the

spectral distributions due to the temperature rounding of the

gap edges.

Analogous ED CDMFT calculations (also for six bath levels

per ring unit cell) were carried out by He and Lu11 at a

considerably lower effective temperature (T = 10−5t). The

excitation gap in this case was found to extend to U → 0.

On the basis of these results the authors concluded that the

spin-liquid phase of the honeycomb lattice at half filling exists

from U = 0 up to the onset of the antiferromagnetic phase

near U = 4.5t .

Closely related to these works are two calculations based on

the variational cluster approximation12 (VCA) by Yu et al.13

and Seki and Ohta.14 In both cases, ED was used as impurity

solver, with six bath levels as in Refs. 6 and 11. Whereas Yu

et al. identified a spin-liquid phase in the range U ≈ 3t–4t and

semimetallic behavior at smaller values of U , Seki and Ohta

obtained a similar insulating contribution to the self-energy at

the Dirac points as in Ref. 6 and concluded that the Mott gap

persists down to arbitrarily small values of U .

Most recently, Hassan and Sénéchal15 performed ED

calculations for the honeycomb lattice within VCA, CDMFT,

and the cluster dynamical impurity approximation16 (CDIA).

They argued that a bath consisting only of six levels per ring

unit cell is insufficient and leads to the erroneous conclusion

that the system is gapped for all nonzero values of the on-site

Coulomb interaction U . In contrast, two- and four-site unit

cells with two bath levels per site were shown to give rise to

first-order transitions. In this context it is also important to

recall the results of functional renormalization group (FRG)

calculations17 for the honeycomb lattice which reveal a stable

semimetallic phase below about U ≈ 3.8t .

In view of these contradictory results it is evident that the

possible existence and extent of the semimetallic phase of the

honeycomb lattice are difficult to determine within present

nonlocal many-body techniques. In particular, it is not clear

which assumptions and approximations give rise to certain

consequences: the size and shape of the correlated cluster,
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the size and symmetry of the bath in ED, the accessible

temperature range, the accuracy of spectral functions at very

low energies, etc. Naturally, these uncertainties also affect the

identification of the elusive spin-liquid phase.

The purpose of this work is to shed light on some of

these issues by comparing new results derived within the

dynamical cluster approximation18 (DCA) with previous ones

obtained within CDMFT.4,6 As impurity solver we use finite-

temperature ED as well as CTQMC. The nearly quantitative

agreement between the ED and CTQMC self-energies, within

DCA as well as CDMFT, demonstrates that the intrinsic

limitations of these impurity solvers are not the cause of the

discrepancies between the various results cited above.

Instead we show here that, for the six-site ring unit cell of

the honeycomb lattice, it is of crucial importance to preserve

the translational invariance of the system. In the case of this

unit cell, deviations from bulk symmetry may readily open

a gap at the Dirac points. Thus, the semimetallic and spin-

liquid phases can only be studied properly by using many-

body methods that do not violate translation symmetry. This

argument disqualifies CDMFT which is well known to yield

a self-energy that is not translationally invariant.19 The self-

energy components in this scheme account for correlations

within the unit cell, but not between cells. We therefore believe

that all CDMFT calculations performed until now for the ring

unit cell of the honeycomb lattice should exhibit, at low U and

low T , an excitation gap which is an artifact caused by the lack

of translation symmetry of the self-energy. Although this gap

is related to the presence of the local Coulomb interaction, it is

not a true Mott gap but merely the consequence of the intrinsic

limitation of the cluster approach. As a result, CDMFT and

other schemes that do not preserve translation invariance are

not suitable for the identification of a spin-liquid phase on the

honeycomb lattice.

The comparison of the CDMFT self-energy with analogous

results derived within DCA, for ED as well as CTQMC, un-

derlines this point. In DCA, the self-energy is by construction

translationally invariant, so that the electronic structure at low

U is semimetallic, in agreement with the predictions based

on large-scale QMC and FRG calculations.1,2,17 The spurious

tail of the excitation gap at small U and low T that is seen in

CDMFT is absent in DCA.

As will be shown below, in the case of the honeycomb

lattice, the DCA condition that ensures translation symmetry

is too rigid for the description of correlations within the unit

cell. As a result, the semimetallic phase is still stable near

U = 5t–6t where CDMFT and large-scale QMC calculations

already find Mott-insulating behavior. Thus, CDMFT and

DCA may be viewed as complementary cluster schemes: DCA

is preferable at low U since it maintains the long-range order

that is crucial for the Dirac cones, whereas CDMFT yields

a more realistic description of short-range correlations in the

Mott phase when the absence of translation symmetry plays a

minor role.

We also note here that the gap tail obtained in CDMFT

at small U is not related to the finite-size and symmetry

properties of the bath used in ED. On the contrary, in the

special case of the honeycomb lattice, a rather small bath

containing only six levels is sufficient for the description of

short-range correlations within the six-site unit cell. The reason

is that, because of the semimetallic properties of the system,

the projection of the bath Green’s function on a finite cluster

is not affected by the usual low-energy disparities that arise in

the case of correlated metals.

In this work, the focus is on the paramagnetic semimetallic

and insulating phases of the Hubbard model of the honeycomb

lattice at half filling. There is general consensus that the strong-

coupling phase of this model is antiferromagnetic, with a criti-

cal Coulomb interaction of about Uc ≈ 4t–5t .1,4,11,13–15,17,20–23

Similar conclusions have been reached using lattice field

theory methods for short-range as well as long-range Coulomb

interactions.24 As these results demonstrate, the chiral sym-

metry of the hexagonal lattice which gives rise to the linear

dispersion of the energy bands in the vicinity of the Dirac cones

is broken spontaneously once the interaction reaches a certain

strength. In these models, a staggered field is introduced which

serves as means to break the chiral symmetry, while periodic

boundary conditions ensure semimetallic behavior at weak

coupling.

The outline of this paper is as follows: In Sec. II we discuss

the application of DCA and CDMFT to the honeycomb lattice

and point out the key difference between the self-energies

obtained within these schemes. Section III presents the main

ingredients of the ED impurity solver for both DCA and

CDMFT. Section IV provides the discussion of the results

obtained within ED DCA, and the comparison with analogous

CTQMC DCA results. The summary is presented in Sec. V.

II. DCA VERSUS CDMFT FOR THE HONEYCOMB

LATTICE

To describe Coulomb correlations in the honeycomb lattice

we consider the single-band Hubbard Hamiltonian

H = −t
∑

〈ij〉σ

(c+
iσ cjσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where t is the nearest-neighbor hopping term and U the

on-site Coulomb energy. Throughout this paper t = 1 defines

the energy scale. The noninteracting band dispersion is

given by ǫ(k) = ±t |1 + eikx

√
3 + ei(kx

√
3+ky3)/2|. The nearest-

neighbor spacing is assumed to be a = 1. We choose a

six-site ring unit cell with positions specified as a1 = (0,0),

a2 = (0,1), a3 = (
√

3/2,3/2), a4 = (
√

3,1), a5 = (
√

3,0), and

a6 = (
√

3/2, −1/2). The supercell lattice vectors are given by

A1/2 = (3
√

3/2, ±3/2). For other unit cells, such as 2- and

4-site clusters, see Ref. 15.

Within CDMFT as well as DCA, the interacting lattice

Green’s function in the site basis is defined as

Gij (iωn) =
∑

k

[iωn + µ − h(k) − �(iωn)]−1
ij , (2)

where ωn = (2n + 1)πT are Matsubara frequencies and T

is the temperature. At half filling, the chemical potential is

µ = U/2. The k sum extends over the reduced Brillouin zone,

h(k) = −t(k), where t(k) denotes the hopping matrix for the

superlattice, and �ij (iωn) represents the self-energy matrix in

the site representation.

Within CDMFT, the elements of t(k) within the unit cell

are given by tij = t for neighboring sites. In addition, hopping
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between cells yields

t14 = t e−ik·A1 , t25 = t e−ik·A2 , t36 = t e−ik·A3 , (3)

where A3 = A2 − A1. The hopping matrix t(k) is Hermitian,

so that tji = t∗ij . All other elements vanish.

To distinguish the hopping matrix elements within DCA,

we denote them by t̄ij (k). In the real-space version of

DCA19 they are related to those within CDMFT via a phase

factor:

t̄ij = tij e−ik·aij , (4)

where aij = ai − aj . This phase relation yields the following

matrix elements:

t̄12 = t̄36 = t̄54 = t e−ik·a12 ,

t̄23 = t̄41 = t̄65 = t e−ik·a23 , (5)

t̄34 = t̄52 = t̄16 = t e−ik·a34 ,

with analogous connections among the Hermitian elements.

All other matrix elements vanish.

The cluster Hamiltonian in CDMFT has the hopping

matrix elements [
∑

k t(k)]ij = tclij where tclij = t = 1 for first

neighbors and tclij = 0 otherwise. In contrast, in DCA we

find t̄clij = t̄ = 0.8103 for first and third neighbors and t̄clij = 0

otherwise.

Within CDMFT as well as DCA, Gij is a symmetric matrix,

with site-independent diagonal components Gii . Thus, the

local density of states is sixfold degenerate. In the case of

CDMFT, there are three independent off-diagonal elements:

G12, G13, and G14. Here, G11, G13 are imaginary and G12, G14

are real. Thus, the corresponding density of states components

ρ11 and ρ13 are even functions of energy, while ρ12 and

ρ14 are odd. In the case of DCA, translation symmetry is

preserved, so that one has the additional condition ρ12 = ρ14

and G12 = G14 due to the equality of first- and third-neighbor

hopping interactions t̄ .

Because of these symmetry properties, it is useful to express

the lattice Green’s function in the diagonal molecular-orbital

basis whose elements Gm(iωn) (m = 1 · · · 6) are determined

by

G1,2 = (G11 + 2G13) ± (G14 + 2G12),
(6)

G3,4 = G5,6 = (G11 − G13) ± (G14 − G12).

The unitary transformation T̄im linking the site and molecular-

orbital bases is defined in Eq. (6) of Ref. 6. Evidently,

in CDMFT there are two independent complex functions,

G1 = −G∗
2 and G3 = −G∗

4. In DCA, the elements Gm=3···6
are degenerate and imaginary. The on-site and intersite

components of the lattice Green’s function can be derived

by inverting Eq. (6):

G11 = [(G1 + G2) + 2(G3 + G4)]/6,

G12 = [(G1 − G2) − (G3 − G4)]/6,
(7)

G13 = [(G1 + G2) − (G3 + G4)]/6,

G14 = [(G1 − G2) + 2(G3 − G4)]/6.

Figure 1 illustrates the uncorrelated density of states

components in the diagonal molecular orbital basis, where

ρm(ω) = − 1
π

Im Gm(ω). The total density of states is, of
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FIG. 1. (Color online) Density of states ρ(ω) (solid curves)

of honeycomb lattice and cluster components ρm(ω) in diagonal

molecular orbital basis (dashed curves) for (a) CDMFT and (b) DCA.

For clarity, these components are divided by nc = 6. In CDMFT,

all density components are nonsymmetric and orbitals 3 and 4 are

doubly degenerate. In DCA, only ρ1 and ρ2 are nonsymmetric, while

the degenerate components ρm=3···6 are symmetric. ω = 0 defines the

Fermi energy for half filling.

course, the same within CDMFT and DCA, but its decompo-

sition into molecular-orbital or intersite contributions differs

for these two schemes. The four CDMFT densities shown in

panel (a) are nonsymmetric and satisfy the relations ρ2(ω) =
ρ1(−ω) and ρ4(ω) = ρ3(−ω). The corresponding DCA den-

sities are plotted in panel (b). In this case, only ρ1(ω) =
ρ2(−ω) are nonsymmetric, whereas ρ3(ω) = ρ4(ω) are

symmetric.

Figure 2(a) shows the Brillouin zone of the honeycomb

lattice together with the three times smaller reduced zone.

Panel (b) illustrates the contributions to the density of states

stemming from the outer k regions KMK ′M ′ and the inner

regions ŴM ′K ′. These two contributions overlap slightly since

the point K ′ does not lie halfway between Ŵ and M . Thus, the

low-energy part of the density of states (denoted as K) extends

up to |ω| � 2, while the high-energy part (denoted as Ŵ)

corresponds to the window 1.75 � |ω| � 3. The comparison

with Fig. 1(b) shows that the diagonal elements of the DCA

density of states correspond to the distributions indicated in

Fig. 2(b). Thus, ρ1,2(ω) account for the energy bands in the

inner regions ŴM ′K ′ and ρ3,4(ω) for those in the outer regions

KMK ′M ′ of the original Brillouin zone. The momentum

regions shown in Fig. 2(a) therefore specify the appropriate

tiling of the Brillouin zone within the DCA.
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FIG. 2. (Color online) (a) Segment of Brillouin zone of honey-

comb lattice (solid red lines). The reduced zone (dashed blue lines)

is obtained by folding the Dirac points K onto Ŵ and the M points

onto M ′. (b) Decomposition of density of states into low-energy

contribution (denoted as K) corresponding to outer regions KMK ′M ′

and high-energy contribution (denoted as Ŵ) corresponding to inner

regions ŴM ′K ′ of large Brillouin zone.

The self-energy matrices in CDMFT and DCA satisfy the

same symmetry properties as the lattice Green’s functions

so that they can be diagonalized in the same manner.

These diagonal elements will be denoted as �m(iωn). In

the site basis the components �11 and �13 are imaginary,

whereas �12 and �14 are real. As translation symmetry is not

obeyed in CDMFT, �12 and �14 differ, while in DCA they

coincide.

We point out that although the hopping matrix elements t(k)

in CDMFT and DCA differ only by a unitary transformation as

indicated in Eq. (4), the same does not hold for the respective

self-energy matrices. As discussed below, the preservation of

translation invariance in DCA and its absence in CDMFT

give rise to fundamentally different physical solutions which

severely affect the phase boundaries. Thus, the DCA and

CDMFT self-energy matrices are not simply related via a

unitary transformation.

Severe differences of this kind between DCA and CDMFT

do not arise in the case of the Hubbard model for the square

lattice, where the cluster Hamiltonians maintain the same

symmetry. The only difference is that the hopping interaction

between neighbors is changed from t = 1 in CDMFT to

t̄ = 1.273 in DCA. As a result, these cluster schemes lead

to a less dramatic reorganization of spectral weight among the

cluster components than in the case of the honeycomb lattice.

III. EXACT DIAGONALIZATION

To avoid double counting of Coulomb interactions in

the quantum impurity calculation, the self-energy must be

removed from the six-site cluster in which correlations

are treated explicitly. This removal yields the bath Green’s

function matrix

G0(iωn) = [G(iωn)−1 + �(iωn)]−1. (8)

Within the ED approach, this bath Green’s function of the

infinite lattice is projected onto the corresponding function

of a supercluster consisting of nc = 6 correlated sites within

the unit cell plus a bath consisting of nb discrete levels.

Here, we choose nb = 6, so that the total number of levels

of the supercluster is ns = nc + nb = 12. Within the diagonal

molecular-orbital basis, this projection implies

G0,m(iωn) ≈ Gcl
0,m(iωn)

=

(

iωn + µ − ǫm −
12

∑

k=7

|Vmk|2

iωn − ǫk

)−1

, (9)

where ǫm=1···6 denotes impurity levels and ǫk=7···12 bath levels.

The bath levels are defined relative to the chemical potential.

We assume that the molecular orbitals couple to independent

baths so that the hybridization matrix elements are also

diagonal in this representation: Vmk = δm+6,kVk . Figure 3(a)

illustrates the impurity and bath levels in the diagonal molecu-

lar orbital basis. Panel (b) shows the equivalent representation

when the impurity orbitals are transformed to the original site

basis. The bath remains unchanged and the hopping terms in

this basis are given by Vik =
∑

m T̄imVmk . This picture differs

from the one in which also the bath is treated within the site

basis (see below).

To determine the bath levels ǫk and hopping terms Vmk we

minimize the difference

Diffm =
M

∑

n=0

WN
n

∣

∣G0,m(iωn) − Gcl
0,m(iωn)

∣

∣

2
, (10)

where M ≈ 210 is the total number of Matsubara points and

the weight function WN
n = 1/ωN

n is introduced to give more

weight to the low-frequency region. We usually take N = 1

or N = 2. Note also that both Green’s functions in the above

expression approach 1/iωn for large ωn. Thus the difference

defined in Eq. (10) automatically focuses on the low-energy

region. This is not the case when the differences of the inverse

Green’s functions are minimized instead. The reason is that

the hybridization functions corresponding to G0,m and Gcl
0,m

are not normalized to the same asymptotic amplitudes. To start

the iterative procedure, we use bath parameters obtained for the

uncorrelated system, or from a converged solution for nearby

Coulomb energies. The resulting ǫk and Vmk are usually very

stable against variations of initial conditions.

In the CDMFT calculations discussed in Ref. 6, not only

the bath levels ǫk and hopping elements Vk were used as

parameters in the fit of G0,m(iωn), but also the impurity levels

ǫm. Since the expression Eq. (9) ensures the correct asymptotic

behavior, the variation of ǫm yields slightly better accuracy

of the fit at the lower Matsubara points. For each diagonal

component G0,m three fit parameters are then available. As
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FIG. 3. (Color online) (a) Cluster levels in molecular orbital basis.

There are six independent terms connecting orbital levels ǫm=1···6 (red

dots) and bath levels ǫk=7···12 (blue dots) via hopping integrals Vk=7···12.

In CDMFT (for fixed impurity levels) one has ǫ1,2 = ∓2t , ǫ3,4 =
ǫ5,6 = ±t , and ǫ7 = −ǫ8, ǫ9 = ǫ11 = −ǫ10 = −ǫ12, V7 = V8, V9 =
V10 = V11 = V12. Thus there are four independent bath parameters.

In DCA, ǫ1,2 = ∓3t̄ , ǫ3···6 = ǫ9···12 = 0; i.e., there are only three

independent fit parameters. (b) Cluster levels in site basis i = 1 · · · 6

(green dots) connected to molecular orbital bath levels ǫk=7···12 (blue

dots) via hopping integrals Vik . For clarity, the hopping interactions

between impurity sites are not shown. Representations (a) and (b) are

equivalent since they are connected via the unitary transformation T̄

between impurity sites i = 1 · · · 6 and orbitals m = 1 · · · 6. The bath

molecular orbital levels in (b) are the same as in (a). Thus, although

the cluster sites have identical levels at zero energy, the bath levels

maintain the orbital symmetry.

there are only two independent complex functions G0,m, the

total number of parameters to fit the bath is six. As shown in

Fig. 24 of Ref. 10 for U = 4 and T = 0.01, this procedure

yields a surprisingly good reproduction of the lattice bath

Green’s function via the cluster Anderson Green’s function,

in spite of the fact that we use only one bath level per impurity

orbital. The reason for this good fit is the semimetallic nature

of the honeycomb lattice, giving rise to a vanishing density

of states at the Fermi level. In contrast, in ordinary correlated

metals and the triangular or square lattice Hubbard models,

the density of states of the infinite lattice is finite, so that a

successful fit to a cluster Green’s function usually requires at

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

  0  1  2  3  4

 G
0

,m
 (

iω
n
) 

ωn

ED DCA   U = 3   T=0.01

Re G0,1

Im G0,1

Im G0,3

FIG. 4. (Color online) Comparison of lattice bath Green’s func-

tion G0,m(iωn) (solid red curves) and cluster Green’s function (dashed

blue curves) for U = 3 and T = 0.01. As the density of states for

m = 3 is symmetric in DCA [see Fig. 1(b)], G0,3 is purely imaginary,

while G0,1 is complex. Thus, the latter function is fitted with two

parameters, whereas G0,3 involves only one fit parameter. The solid

and dashed curves for G0,1 are indistinguishable.

least two bath levels per orbital and restriction to not very low

temperatures (typically T � 0.01).

In the DCA calculations presented below, we fix the

impurity levels ǫm at their nominal cluster values. Thus,

ǫ1,2 = ∓3t̄ and ǫ3,4 = 0. The latter value reflects the fact

that the DCA density of states components ρ3,4(ω) are even

functions of energy. Thus, the fit of G0,m=1,2 involves two

parameters (the bath level ǫ7 = −ǫ8 and the hopping element

V7 = V8), while G0,m=3,4 includes only the hopping element

V9 = V10 as fit parameter.

Figure 4 illustrates the quality of the fit of G0 within ED

DCA for U = 3 and T = 0.01. The parameters used in these

fits are ǫ1 = −3t̄ = −2.4309, ǫ7 = −1.856 94, V7 = 0.262 70

for m = 1 and ǫ3 = ǫ9 = 0, V9 = 0.867 01 for m = 3. As

pointed out above in the case of CDMFT, the excellent

representation of the lattice Green’s function via the cluster

Green’s function using only one bath level per impurity orbital

is related to the vanishing density of states at the Fermi level.

The diagonalization of the supercluster Hamiltonian is

conveniently carried out in the site basis. At low temperatures

only a few excited states need to be included in the evaluation

of the cluster Green’s function Gcl
ij (iωn). The diagonalization

can then be performed very efficiently by making use of

the Arnoldi algorithm. Details concerning this procedure are

provided in Refs. 7,8 and 10. Since the cluster Green’s

function obeys the same symmetry properties as the lattice

Green’s function, it is diagonal in the molecular-orbital basis.

These elements will be denoted as Gcl
m(iωn). The diagonal

cluster self-energy components are then given by an expression

analogous to Eq. (8):

�cl
m (iωn) = 1/Gcl

0,m(iωn) − 1/Gcl
m(iωn). (11)

The key physical assumption in DMFT is now that this cluster

self-energy provides an accurate representation of the lattice

self-energy. Thus,

�m(iωn) ≈ �cl
m (iωn). (12)

In the next iteration, these self-energy components are used as

input in the lattice Green’s function Eq. (2). In the diagonal

molecular-orbital basis the DCA lattice Green’s function is
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given by

Gm(iωn) =
∑

k

[iωn + µ − T̄ −1h̄(k)T̄ − �(iωn)]−1
mm. (13)

We note here that, at real energies, the cluster quantities Gcl
m,

Gcl
0,m, and �cl

m have discrete spectra, while the corresponding

lattice spectra associated with the quantities Gm, G0,m, and

�m are continuous.

We close this section by pointing out that we believe the

projection of the bath Green’s function within the diagonal

molecular-orbital basis discussed above to be more general

and more flexible than analogous projections within the

nondiagonal site basis. As mentioned above, within CDMFT

there are two independent complex functions G0,m (with

nonsymmetric spectral distributions) that are fitted each with

one bath level ǫk and one hopping term Vk (assuming the

impurity level ǫm to be fixed). Thus, there are altogether

four fit parameters. This should be compared to only one

fit parameter if the site basis is used instead. For symmetry

reasons all bath levels then are zero so that only the site

independent impurity bath hopping element remains as a

single-fit parameter. Introducing a hopping interaction among

bath levels as was done in Ref. 11 increases the number of fit

parameters from one to two. Actually, since the bath can always

be represented in a diagonal form, hopping among bath levels

is implicitly included in the diagonal molecular orbital picture

with four fit parameters. Analogous considerations hold for

DCA. Nevertheless, as will be shown in the next section, these

slightly different implementations of ED all yield consistent

answers concerning the variation of the excitation gap as a

function of Coulomb energy.

IV. RESULTS AND DISCUSSION

Figure 5 shows the comparison of the excitation gaps

obtained for various cluster methods and impurity solvers.

Near U ≈ 5, all calculations (except DCA, see below) predict

a Mott phase with a gap � ≈ 0.5–0.9. At U � 4, the CDMFT
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FIG. 5. (Color online) Comparison of excitation gaps as functions

of Coulomb interaction derived using several cluster methods and

impurity solvers for paramagnetic phase of honeycomb lattice. Meng

et al.: large-scale QMC (Ref. 1), Wu et al.: CTQMC CDMFT (Ref. 4),

Liebsch: ED CDMFT (Ref. 6), He et al.: ED CDMFT (Ref. 11), Seki

et al.: ED VCA (Ref. 14). In contrast, both ED and CTQMC DCA

yield semimetallic behavior with � = 0 for U � 6 (see text).

and VCA results that do not preserve translation symmetry

exhibit a gap tail that persists down to U → 0. The differences

between these results are partly caused by the different

temperatures used in these studies. In particular, the gap

closing near U = 3.8 obtained within CDMFT by Wu et al.4

seems to be related to the rather high temperature, T = 0.05,

employed in the CTQMC calculation. Since the CTQMC

self-energy agrees well with the ED results, CTQMC CDMFT

presumably would also yield a gap at lower T . Also, the ED

calculations in Ref. 6 were carried out at T = 0.005, while

those in Refs. 11 and 14 essentially correspond to the T → 0

limit.

In striking contrast to CDMFT, the translation invariance

of DCA ensures the existence of a semimetallic phase at low

values of U . On the other hand, the condition �12 = �14

cannot generally be correct for the short-range correlations

within the unit cell. Thus, at Coulomb energies, where local

Mott physics dominates and long-range translational invari-

ance becomes less important, DCA should be less appropriate

than CDMFT. Indeed, both ED and CTQMC DCA results

suggest that the semimetallic phase with � = 0 extends to

U > 6, i.e., beyond the critical Coulomb energy Uc ≈ 3.9–4.3

of the antiferromagnetic phase.1,2

This is illustrated in Fig. 6, which shows the interacting

density of states obtained in ED and CTQMC DCA for several

Coulomb energies. The ED spectra were obtained by making
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FIG. 6. (Color online) Density of states A11(ω) = − 1

π
Im G11(ω)

of honeycomb lattice for several Coulomb energies. Red solid

curves: U = 6, dashed curves: U = 3–5. (a) ED DCA (T = 0.01).

(b) CTQMC DCA (T = 0.025). For illustrative purpose, only the

low-energy range of the ED spectra is shown. The dotted curve

denotes the bare density of states.
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calculated within (a) ED DCA and (b) CTQMC DCA at T = 0.01.

Solid red curves: U = 4; dashed curves: U = 1–3.

use of the extrapolation routine RATINT,25 while the CTQMC

spectra were derived via the maximum entropy method.26 For

details concerning the CTQMC calculations, see Ref. 4. The

main effect of Coulomb interactions is seen to be the usual

band narrowing and effective mass enhancement, as found in

weakly correlated systems. In contrast, the corresponding ED

and CTQMC CDMFT spectra for U = 5 reveal a large Mott

gap of about � = 0.6 (see Fig. 5).4,6

The persistence of semimetallic behavior at large U within

DCA is related to the fact that the enforcement of translation

symmetry is achieved at the expense of equating first- and

third-neighbor interactions in the cluster Hamiltonian. The

self-energy in the site basis then satisfies the condition

�12 = �14, whereas in CDMFT �14 is noticeably smaller than

�12.6,10

The good correspondence between the DCA spectra ob-

tained within ED and CTQMC is a consequence of the

nearly quantitative agreement of the lattice Green’s functions

G1i(iωn) which are shown in Fig. 7. As pointed out in the

preceding section, for symmetry reasons G11 and G13 are

imaginary, while G12 = G14 are real. Both impurity solvers

yield Im G11(iωn) → 0 in the limit ωn → 0, implying that

the local density of states, ρ(ω) = − 1
π

Im G11(ω) vanishes at

ω = 0. Also, both schemes indicate that with increasing values

of U the initial slope of Im G11 and Im G13 increases. Thus,

the Dirac cones become steeper and spectral weight is shifted

towards the Fermi level.

The results obtained within DCA differ in two qualitative

aspects from those derived previously in CDMFT. As shown

in Fig. 8, the components G12 and G14 in CDMFT do not
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FIG. 8. (Color online) Green’s function components G1i(iωn)

(i = 1,2,4) of honeycomb lattice as functions of Matsubara frequency

calculated within ED CDMFT. Solid red curves: U = 4; dashed

curves: U = 1–3.

coincide. Moreover, the initial slopes of Im G11 and Im G13

become smaller with increasing U rather than larger as within

DCA. In Ref. 6 it was demonstrated that for U � 4 a Mott

gap opens in the density of states, in approximate agreement

with the large-scale QMC calculations by Meng et al.1 At

smaller values of U , a tiny gap or pseudogap was also found

(see below), which is however difficult to resolve within ED

at finite T . As the opening of a gap in the density of states

implies a reduction of |Im G11(iωn)| at small values of ωn,

the results shown in Figs. 7 and 8 underline the fundamental

difference between DCA and CDMFT for the honeycomb

lattice: Whereas DCA yields a weakly correlated semimetal,

CDMFT gives rise to insulating behavior even at small U .

To illustrate the effect of Coulomb correlations in more

detail, we show in Fig. 9 the self-energy components in

the site basis for several values of U . The corresponding

results obtained within CTQMC DCA are depicted in Fig. 10.

There is good overall correspondence between these two

impurity solvers, except for slightly different magnitudes of

the off-diagonal components. We note, however, that Re �12

and Im �13 are approximately one and two orders of magnitude

smaller than Im �11, respectively. As can be seen in Fig. 7,

these differences have only a minor effect on the variation

of the Green’s function components with increasing Coulomb

energy.

The crucial question in the case of the honeycomb lattice is

how Coulomb correlations influence the energy bands in the

vicinity of the Dirac points. The self-energy at these points can

be shown to have the simple form6

�(K,iωn) ≈ iωna +
b2

iωn(1 − a)
, ωn → 0, (14)

where the coefficients are given by

a = Im[�11(iωn) − �13(iωn)]/ωn, (15)

b = Re[�12(iωn) − �14(iωn)] (16)

in the limit ωn → 0. Thus, �(K,iωn) is imaginary as expected

for particle-hole symmetry near the Dirac points. Moreover,

this self-energy consists of metallic (∼iωn) and insulating

(∼1/iωn) contributions, where the latter term is a direct

consequence of the fact that �12 
= �14. The presence of this
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FIG. 9. (Color online) Self-energy components �1i(iωn) (i =
1,2,3) of honeycomb lattice as functions of Matsubara frequency

calculated within ED DCA for U = 1–4 at T = 0.01.

term implies Re �(K,ω) ≈ b2/[ω(1 − a)] at real ω. In the

low-temperature limit, this expression yields an excitation gap

of magnitude � ≈ 2
√

|c|, where c = b2/(1 − a). A similar

insulating contribution to the self-energy was recently found

in Ref. 14. Presumably, this insulating term is also present

in the ED calculations reported in Refs. 11 and 13. At finite

T , the gap is smoothened out so that it becomes difficult to

determine its boundaries. In contrast, as discussed in Sec. II,

DCA preserves the bulk symmetry, so that �12 = �14 and

� = 0. Thus, the DCA self-energy at the Dirac points is purely

metallic, where the increasing magnitude of the coefficient

a implies increasing quasiparticle broadening and shift of

spectral weight towards the Fermi level as U increases. From

the initial slope of Im �11 at U = 4 we obtain an effective

mass enhancement of about m∗/m ≈ 1.3.

The above discussion demonstrates that the presence or

absence of the insulating contribution to �(K,iωn) is not

caused by the impurity solver used in the CDMFT or DCA
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FIG. 10. (Color online) Self-energy components �1i(iωn) (i =
1,2,3) of honeycomb lattice as functions of Matsubara frequency

calculated within CTQMC DCA for U = 1–4 at T = 0.01.

calculations. In fact, the good agreement between ED and

CTQMC, for both CDMFT and DCA, suggests that in the case

of the honeycomb lattice one bath level per impurity orbital is

sufficient for an accurate fit of the bath Green’s function. The

reason is that, because of the semimetallic nature of the honey-

comb lattice, the projection of the bath Green’s function of the

infinite lattice onto a finite-cluster Anderson Green’s function

is not plagued by the low-energy–low-temperature discrepan-

cies that usually occur in the case of correlated metals. In these

systems at least two bath levels per impurity orbital are typi-

cally required and very low temperatures must be avoided.10

The focus of this section is on the paramagnetic phase of

the honeycomb lattice derived within two impurity solvers

and two cluster extensions of DMFT. We close this discus-

sion by commenting briefly on the antiferromagnetic phases

obtained at strong coupling. Within CTQMC CDMFT we had

shown previously4 that Uc ≈ 3.7t , in approximate agreement

with other schemes.1,11,13–15,17 Analogous CTQMC DCA
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calculations yield a slightly smaller value, Uc ≈ 3.3t . The

difference is presumably related to the fact pointed out

above, namely, that the enforcement of translation symmetry

within DCA implies the condition �12 = �14, which accounts

properly for interactions between unit cells, but which is surely

unrealistic within the ring unit cell, in particular, at large U ,

where short-range correlations dominate. Thus, in this range,

CDMFT should provide a more adequate description of the

cluster self-energy.

V. SUMMARY

The role of Coulomb correlations in the Hubbard model

for the honeycomb lattice has been studied within finite-

temperature exact diagonalization and continuous-time quan-

tum Monte Carlo combined with the dynamical cluster

approximation. The unique feature of DCA is that it preserves

the translation invariance so that the system at small values of

U is semi-metallic. In contrast, CDMFT violates translation

symmetry which, in the case of ring unit cells, implies

the opening of an excitation gap at arbitrarily small U ,

regardless of the impurity solver. This gap is therefore an

artifact caused by the lack of long-range crystal symmetry

and does not correspond to a true Mott gap. At larger

values of U , however, many-body interactions are dominated

by short-range correlations and translation symmetry ceases

to be important. DCA then becomes less accurate since

it overemphasizes semimetallic behavior. Thus, for U ≈ 5,

CDMFT is preferable and reveals a Mott gap in qualitative

agreement with large-scale QMC calculations.

In the case of the ring unit cell of the honeycomb lattice,

DCA and CDMFT may therefore be viewed as complementary

cluster approaches. As DCA preserves translation symmetry,

it is more appropriate in the semimetallic phase at small U

where long-range order is a prerequisite for the description of

the weakly correlated Dirac cones. The condition �12 = �14

which guaranties this symmetry, however, is unrealistic at

larger U , when short-range correlations within the unit cell

begin to dominate. Thus, in the region of the Mott phase,

CDMFT is more suitable. As a result of these inherent

limitations of both cluster schemes, the critical Coulomb

interaction defining the precise boundary between these phases

is at present difficult to determine within either CDMFT or

DCA. We emphasize that this difficulty is not related to the

finite size or symmetry of the bath used in ED. On the contrary,

within CDMFT as well as DCA, the ED self-energies agree

remarkably well with the corresponding CTQMC results.

It is interesting to inquire why the remarkable difference

between CDMFT and DCA for the honeycomb lattice dis-

cussed in this paper does not also manifest itself in other

systems, such as the Hubbard models for square and triangular

lattices. In these cases, long-range order is mainly responsible

for the logarithmic divergence of the Van Hove singularities

of the density of states. Thus, any lack of perfect translation

symmetry would give rise to a rounding of this peak, an

effect that would be difficult to distinguish from broadening

induced by finite temperature and quasiparticle damping. In

contrast, any rounding of Dirac cones induces the opening of

a gap. In this regard, the Dirac cones of the honeycomb lattice

correspond to a rather peculiar special situation that does not

arise in most cases which have been studied previously within

CDMFT and DCA at finite temperatures.
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